-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
171 lines (138 loc) · 5.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from __future__ import division
from __future__ import unicode_literals
from torch.utils import data
from torch_geometric.data import Data
from torch.nn import BatchNorm1d
from torch_geometric.data import InMemoryDataset
from torch_geometric.data import Batch
from torch.nn import Sequential as Seq, Linear, ReLU, CrossEntropyLoss
import torch.nn.functional as F
from torch_geometric.nn import MessagePassing, GCNConv, NNConv, GATConv, TopKPooling, global_add_pool
from torch_geometric.utils import remove_self_loops, add_self_loops, degree
from torch_geometric.nn import global_mean_pool as gap
from torch_geometric.nn import global_max_pool as gmp
from torch_geometric.datasets import MoleculeNet
from torch_geometric.data import DataLoader, Dataset
import os
import torch
import pickle
import collections
import math
import numpy as np
import random
import matplotlib.pyplot as plt
from pysmiles import read_smiles
import pandas as pd
import logging
import seaborn as sns
from tqdm import tqdm
import networkx as nx
from itertools import repeat, product, chain
from tqdm.notebook import trange, tqdm
from ogb.utils import smiles2graph
import multiprocessing
from model import *
from train_data import *
# turn this off
def base_model_train(data):
for batch_data in train_data_loader:
batch_data=batch_data.to(device)
optimizer.zero_grad()
x = batch_data.x.float()
edge_index = batch_data.edge_index
batch_index = batch_data.batch
#prediction, embedding = model(x, edge_index,batch_index )
prediction = model(x, edge_index,batch_index )
loss_val = loss_function(prediction, batch_data.y)
loss_val.backward()
optimizer.step()
return loss_val
# return loss_val, embedding
epochs = 200
hist_loss = []
for epoch in range(epochs):
#loss, h = model_train(data)
loss = base_model_train(data)
hist_loss.append(loss)
if epoch%10 == 0:
print("Completed Epochs: {} -> Loss: {}".format(epoch, loss))
# Save the Trained Model
torch.save(baseModel, "models/kinase_baseModel_ensemble_Model3.pkl")
# Baseline Model was trained over 2500 epochs
hist_losses = [float(loss.cpu().detach().numpy()) for loss in hist_loss[:]]
loss_index = [i for i in range(len(hist_losses))]
# Plotting
fig, ax = plt.subplots(figsize=(6, 4),dpi=100)
p2 = sns.lineplot(loss_index, hist_losses)
ax.set_xlabel('Epochs')
ax.set_ylabel('Loss')
fig.savefig('images/training_loss_ensemble_Model3.png',dpi=400)
## ensemble learning ###
# turn this off
def model_train(data):
for batch_data in train_data_loader:
batch_data=batch_data.to(device)
optimizer.zero_grad()
x = batch_data.x.float()
edge_index = batch_data.edge_index
batch_index = batch_data.batch
#prediction, embedding = model(x, edge_index,batch_index )
prediction = model(x, edge_index,batch_index )
loss_val = loss_function(prediction, batch_data.y)
loss_val.backward()
optimizer.step()
return loss_val
# return loss_val, embedding
epochs = 200
hist_loss = []
for epoch in range(epochs):
#loss, h = model_train(data)
loss = model_train(data)
hist_loss.append(loss)
if epoch%10 == 0:
print("Completed Epochs: {} -> Loss: {}".format(epoch, loss))
# Save the Trained Model
torch.save(baseModel, "models/kinase_baseModel_ensemble_Model3.pkl")
# Baseline Model was trained over 2500 epochs
hist_losses = [float(loss.cpu().detach().numpy()) for loss in hist_loss[:]]
loss_index = [i for i in range(len(hist_losses))]
# Plotting
fig, ax = plt.subplots(figsize=(6, 4),dpi=100)
p2 = sns.lineplot(loss_index, hist_losses)
ax.set_xlabel('Epochs')
ax.set_ylabel('Loss')
fig.savefig('images/training_loss_ensemble_Model3.png',dpi=400)
# ensemble trainging
def ensemble_model_train(data):
for batch_data in train_data_loader:
batch_data=batch_data.to(device)
optimizer.zero_grad()
x = batch_data.x.float()
edge_index = batch_data.edge_index
batch_index = batch_data.batch
#prediction, embedding = model(x, edge_index,batch_index )
prediction = model(x, edge_index,batch_index )
loss_val = loss_function(prediction, batch_data.y)
loss_val.backward()
optimizer.step()
return loss_val
# return loss_val, embedding
epochs = 200
hist_loss = []
for epoch in range(epochs):
#loss, h = model_train(data)
loss = ensemble_model_train(data)
hist_loss.append(loss)
if epoch%10 == 0:
print("Completed Epochs: {} -> Loss: {}".format(epoch, loss))
# Save the Trained Model
torch.save(baseModel, "models/kinase_baseModel_ensemble_Model3.pkl")
# Baseline Model was trained over 2500 epochs
hist_losses = [float(loss.cpu().detach().numpy()) for loss in hist_loss[:]]
loss_index = [i for i in range(len(hist_losses))]
# Plotting
fig, ax = plt.subplots(figsize=(6, 4),dpi=100)
p2 = sns.lineplot(loss_index, hist_losses)
ax.set_xlabel('Epochs')
ax.set_ylabel('Loss')
fig.savefig('images/training_loss_ensemble_Model3.png',dpi=400)