forked from Azure/azureml-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
deploy-managed-online-endpoint-ncd.sh
79 lines (62 loc) · 2.55 KB
/
deploy-managed-online-endpoint-ncd.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
set -e
# <set_endpoint_name>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
# </set_endpoint_name>
# endpoint name
export ENDPOINT_NAME=endpt-ncd-`echo $RANDOM`
AML_SKLEARN_MODEL_NAME=mir-sample-sklearn-ncd-model
echo $AML_SKLEARN_MODEL_NAME
AML_LIGHTGBM_MODEL_NAME=mir-sample-lightgbm-ncd-model
echo $AML_LIGHTGBM_MODEL_NAME
# <create_endpoint>
az ml online-endpoint create --name $ENDPOINT_NAME -f endpoints/online/ncd/create-endpoint.yaml
# </create_endpoint>
# check if create was successful
endpoint_status=`az ml online-endpoint show --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
# cleanup of existing models
model_archive=$(az ml model archive -n $AML_SKLEARN_MODEL_NAME --version 1 || true)
model_archive=$(az ml model archive -n $AML_LIGHTGBM_MODEL_NAME --version 1 || true)
# <create_sklearn_deployment>
az ml online-deployment create --name sklearn-deployment --endpoint $ENDPOINT_NAME -f endpoints/online/ncd/sklearn-deployment.yaml --all-traffic
# </create_sklearn_deployment>
deploy_status=`az ml online-deployment show --name sklearn-deployment --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_sklearn_deployment>
az ml online-endpoint invoke --name $ENDPOINT_NAME --request-file endpoints/online/ncd/sample-request-sklearn.json
# </test_sklearn_deployment>
# <create_lightgbm_deployment>
az ml online-deployment create --name lightgbm-deployment --endpoint $ENDPOINT_NAME -f endpoints/online/ncd/lightgbm-deployment.yaml
# </create_lightgbm_deployment>
deploy_status=`az ml online-deployment show --name lightgbm-deployment --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_lightgbm_deployment>
az ml online-endpoint invoke --name $ENDPOINT_NAME --deployment lightgbm-deployment --request-file endpoints/online/ncd/sample-request-lightgbm.json
# </test_lightgbm_deployment>
# cleanup of models
model_archive=$(az ml model archive -n $AML_SKLEARN_MODEL_NAME --version 1 || true)
model_archive=$(az ml model archive -n $AML_LIGHTGBM_MODEL_NAME --version 1 || true)
# <delete_endpoint>
az ml online-endpoint delete --name $ENDPOINT_NAME --yes
# </delete_endpoint>