-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlib.py
107 lines (86 loc) · 3.5 KB
/
lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from typing import Union, Iterable
import functools
import pandas as pd
import jscatter
import ipywidgets
import traitlets
import matplotlib.colors as colors
def partition_by_sample(df, samples) -> list[pd.DataFrame]:
eigs = []
for sample in samples:
eigs_df = df[df["sample"] == sample].reset_index().dropna()
eigs.append(eigs_df)
# create shared index for all dataframes
index = functools.reduce(pd.Index.intersection, [df.index for df in eigs])
return [df.loc[index] for df in eigs]
def extract_color_series(
track_data: pd.DataFrame,
field: str,
color_kwargs: Union[dict, None],
):
data = track_data[field]
if color_kwargs is None:
color_kwargs = {}
if data.dtype.name in ("object", "category"):
data = data.astype("category") # ensure categorical
color_kwargs["map"] = dict(zip(data.cat.categories, jscatter.glasbey_dark))
else:
color_kwargs["norm"] = colors.Normalize(vmin=data.min(), vmax=data.max())
color_kwargs["map"] = "viridis_r"
return data, color_kwargs
if color_kwargs and "relabel" in color_kwargs:
data = data.map(color_kwargs["relabel"])
return data, color_kwargs
def init_dropdowns(
xy_options,
color_options,
color_kwargs,
scatters: Iterable[jscatter.Scatter]
):
x = xy_options[0]
x_dropdown = ipywidgets.Dropdown(options=xy_options, value=x, description="x:")
def on_change_x(change):
for scatter in scatters:
scatter.x(change.new)
y = xy_options[1]
y_dropdown = ipywidgets.Dropdown(options=xy_options, value=y, description="y:")
def on_change_y(change):
for scatter in scatters:
scatter.y(change.new)
color = color_options[0]
c_dropdown = ipywidgets.Dropdown(
options=color_options, value=color, description="color:"
)
def on_change_color(change):
field = change["new"]
for scatter in scatters:
track_data = scatter._data
data, kwargs = extract_color_series(track_data, field, color_kwargs.get(field))
scatter._data["_color"] = data
scatter.color(by="_color", **kwargs)
x_dropdown.observe(on_change_x, names=["value"])
y_dropdown.observe(on_change_y, names=["value"])
c_dropdown.observe(on_change_color, names=["value"])
on_change_color(dict(new=color))
return x_dropdown, y_dropdown, c_dropdown
def init_scatters(
samples: Iterable[tuple[str, pd.DataFrame]],
xy_options: list[str],
color_options: list[str],
color_kwargs: dict,
):
jscatter.compose
scatters = [jscatter.Scatter(x=xy_options[0], y=xy_options[1], data=data, opacity=0.5) for _, data in samples]
synced = jscatter.compose([(scatter, name) for scatter, (name, _) in zip(scatters, samples)], sync_view=True, sync_selection=True, sync_hover=True)
dropdowns = init_dropdowns(xy_options=xy_options, color_options=color_options, scatters=scatters, color_kwargs=color_kwargs)
component = ipywidgets.VBox([synced, ipywidgets.HBox(dropdowns)])
def extract_coords(ind):
return scatters[0]._data.iloc[ind][["chrom", "start", "end"]]
# we expose a single "selection" for this component, which the viewer can subscribe to
component.add_traits(coords=traitlets.Any(extract_coords([])))
ipywidgets.dlink(
source=(scatters[0].widget, "selection"),
target=(component, "coords"),
transform=extract_coords,
)
return component