-
Notifications
You must be signed in to change notification settings - Fork 0
/
bmf_clingo.m
143 lines (126 loc) · 5 KB
/
bmf_clingo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
% ---------- Bender's Minimum Fill-in Algorithm ------------ %
% Input: Sparse Symmetric n-by-n matrix M with non-zero diagonal elements
% Output: Permutation Pattern P
% ---------------------------------------------------------- %
function [P, PEO,FILL] = bmf(M)
% Algorithm Parameters
[m,n] = size(M);
assert((m==n) && all(all(M == M')), 'Input a square symmtric matrix');
M(M~=0) = 1;
ADJ = tril(M,-1) + tril(M,-1)';
G = graph(ADJ);
MAX_FILL = n*(n-1)/2;
FILL = [];
% Edge Set and Complement Edge Set
edges = G.Edges.EndNodes;
N = size(edges,1);
universe = [];
K = 2; m = 0; h = K; iteration = 1; combination = 1:K;
while(iteration > 0)
[combination, m, h, iteration] = GetNextCombination(N,K,combination, m, h, iteration);
universe = [universe; combination];
end
edge_comp = setdiff(universe, edges, 'rows');
% Initial Point:
model = struct;
model.A = [];
for i = 1:N
temp_row = zeros(1, MAX_FILL);
temp_row(edges(i,1) + (edges(i,2) - 1)*(edges(i,2) - 2)/2) = 1;
model.A = [model.A; temp_row];
end
z_start = sum(model.A,1);
model.rhs(1:N,:) = 1;
assert(nnz(z_start) == N, 'Initial Solve Incorrect');
% Setting up Gurobi Model:
model.obj = 1-z_start;
model.sense(1:N,:) = ['='];
model.modelsense = 'min';
model.vtype = 'B';
model.A = sparse(model.A);
params.outputflag = 1;
filename = ASP_input(G);
Ck = clingo_ischordal(filename);
while (~isempty(Ck))
for i = 1:length(Ck)
C = Ck{i};
sub_cycle = [sort(cell2mat(cellfun(@(s) str2double(s(2:end)), C, 'uni', false)),2), zeros(1, n-length(C))];
rhs_c = zeros(1, MAX_FILL);
lhs_c = zeros(1, MAX_FILL);
% Identifying chords, edges and chords
v_chord = length(C);
E_chord = sort([str2num(C{1}(2:end)), str2num(C{end}(2:end))]);
if(any(ismember(edge_comp,E_chord(end,:),'rows')))
rhs_c(E_chord(end,1) + (E_chord(end,2) - 1)*(E_chord(end,2) - 2)/2) = 1;
end
for z = 1:v_chord-1
E_chord = [E_chord; sort([str2num(C{z}(2:end)), str2num(C{z+1}(2:end))])];
if(any(ismember(edge_comp,E_chord(end,:),'rows')))
rhs_c(E_chord(end,1) + (E_chord(end,2) - 1)*(E_chord(end,2) - 2)/2) = 1;
end
end
int_chord = [];
K = 2; m = 0; h = K; iteration = 1; combination = 1:K;
while(iteration > 0)
[combination, m, h, iteration] = GetNextCombination(v_chord,K,combination, m, h, iteration);
diff = abs(combination(1) - combination(2));
if(diff ~= 1 && diff ~= (v_chord-1)) % Not edges
int_chord = [int_chord; sort([str2num(C{combination(1)}(2:end)),str2num(C{combination(2)}(2:end))])];
lhs_c(int_chord(end,1) + (int_chord(end,2)-1)*(int_chord(end,2)-2)/2) = 1;
end
end
assert(length(rhs_c) == length (lhs_c), 'z must be of same length on both sides of the cut')
assert(length(E_chord) + length(int_chord) == nchoosek(v_chord,2),'No. of edges and no. of chords do not add to choose(|V|,2)');
% Update Constraints for each chordless cycle:
model.A = [model.A; (v_chord - 3)*rhs_c - lhs_c];
model.rhs = [model.rhs; (v_chord - 3)*(nnz(rhs_c) - 1)]; % nnz(rhs_c) = no. of edges common to E_chord and edge_comp
% nnz(rhs_c) = size(intersect(E_chord, edge_comp, 'rows'),1);
model.sense = [model.sense; '<'];
end
%Solve Gurobi Model with new constraints:
model.A = sparse(model.A);
assert(issparse(model.A) && ~issparse(model.rhs));
result = gurobi(model, params); % Solution z^k with all accumulated Benders cuts
% Getting Fill edges:
fill_loc = triu(ones(n),1);
fill_loc(fill_loc == 1) = result.x;
[fill_row, fill_col] = find(fill_loc);
FILL = unique([FILL; setdiff([fill_row, fill_col], edges, 'rows')], 'rows');
assert(length(FILL) < MAX_FILL);
% Generating New Chordal Cycles:
filename = ASP_input(addedge(G, FILL(:,1)',FILL(:,2)',ones(1,size(FILL,1))));
Ck = clingo_ischordal(filename);
end
% Finding Perfect Elimination Ordering using Lexicographic Breadth First Search:
if(~isempty(FILL))
chordal_graph = addedge(G, FILL(:,1)', FILL(:,2)',ones(1, size(FILL,1)));
else
chordal_graph = G;
end
label = strings(1,n); % All vertices are unnumbered
label(:) = '0';
elim_order(1:n) = 0;
ii = n;
while(ii >= 1)
% Finding the largest lexicographic unnumbered vertex:
idx = find(elim_order == 0); % Unnumbered vertices
% Finding lexicographically largest label:
lex_label = str2double(label(idx));
y = find(lex_label == max(lex_label));
elim_order(idx(y(1))) = n+1-ii; % Picking alexicographically largest label
nbrs = neighbors(chordal_graph, idx(y(1))); % Finding all neighbors
for kk = 1:length(nbrs)
if(elim_order(nbrs(kk)) == 0) % If un-numbered
label(nbrs(kk)) = strcat(label(nbrs(kk)),num2str(ii));
end
end
ii = ii-1;
end
PEO = zeros(1, n);
for i = 1:n
PEO(elim_order(i)) = i;
end
PEO = flip(PEO);
ID = speye(n);
P = ID(PEO, :);
end