forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom.py
129 lines (100 loc) · 4.71 KB
/
random.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import contextlib
from typing import Generator
import warnings
from torch._C import default_generator
import torch
def set_rng_state(new_state: torch.Tensor) -> None:
r"""Sets the random number generator state.
.. note: This function only works for CPU. For CUDA, please use
torch.manual_seed(seed), which works for both CPU and CUDA.
Args:
new_state (torch.ByteTensor): The desired state
"""
default_generator.set_state(new_state)
def get_rng_state() -> torch.Tensor:
r"""Returns the random number generator state as a `torch.ByteTensor`."""
return default_generator.get_state()
def manual_seed(seed) -> torch._C.Generator:
r"""Sets the seed for generating random numbers. Returns a
`torch.Generator` object.
Args:
seed (int): The desired seed. Value must be within the inclusive range
`[-0x8000_0000_0000_0000, 0xffff_ffff_ffff_ffff]`. Otherwise, a RuntimeError
is raised. Negative inputs are remapped to positive values with the formula
`0xffff_ffff_ffff_ffff + seed`.
"""
seed = int(seed)
import torch.cuda
if not torch.cuda._is_in_bad_fork():
torch.cuda.manual_seed_all(seed)
return default_generator.manual_seed(seed)
def seed() -> int:
r"""Sets the seed for generating random numbers to a non-deterministic
random number. Returns a 64 bit number used to seed the RNG.
"""
seed = default_generator.seed()
import torch.cuda
if not torch.cuda._is_in_bad_fork():
torch.cuda.manual_seed_all(seed)
return seed
def initial_seed() -> int:
r"""Returns the initial seed for generating random numbers as a
Python `long`.
"""
return default_generator.initial_seed()
_fork_rng_warned_already = False
@contextlib.contextmanager
def fork_rng(devices=None, enabled=True, _caller="fork_rng", _devices_kw="devices") -> Generator:
"""
Forks the RNG, so that when you return, the RNG is reset
to the state that it was previously in.
Args:
devices (iterable of CUDA IDs): CUDA devices for which to fork
the RNG. CPU RNG state is always forked. By default, :meth:`fork_rng` operates
on all devices, but will emit a warning if your machine has a lot
of devices, since this function will run very slowly in that case.
If you explicitly specify devices, this warning will be suppressed
enabled (bool): if ``False``, the RNG is not forked. This is a convenience
argument for easily disabling the context manager without having
to delete it and unindent your Python code under it.
"""
import torch.cuda
global _fork_rng_warned_already
# Internal arguments:
# _caller: the function which called fork_rng, which the user used
# _devices_kw: the devices keyword of _caller
if not enabled:
yield
return
if devices is None:
num_devices = torch.cuda.device_count()
if num_devices > 1 and not _fork_rng_warned_already:
warnings.warn(
("CUDA reports that you have {num_devices} available devices, and you "
"have used {caller} without explicitly specifying which devices are being used. "
"For safety, we initialize *every* CUDA device by default, which "
"can be quite slow if you have a lot of GPUs. If you know that you are only "
"making use of a few CUDA devices, set the environment variable CUDA_VISIBLE_DEVICES "
"or the '{devices_kw}' keyword argument of {caller} with the set of devices "
"you are actually using. For example, if you are using CPU only, "
"set CUDA_VISIBLE_DEVICES= or devices=[]; if you are using "
"GPU 0 only, set CUDA_VISIBLE_DEVICES=0 or devices=[0]. To initialize "
"all devices and suppress this warning, set the '{devices_kw}' keyword argument "
"to `range(torch.cuda.device_count())`."
).format(num_devices=num_devices, caller=_caller, devices_kw=_devices_kw))
_fork_rng_warned_already = True
devices = list(range(num_devices))
else:
# Protect against user passing us a generator; we need to traverse this
# multiple times but a generator will be exhausted upon first traversal
devices = list(devices)
cpu_rng_state = torch.get_rng_state()
gpu_rng_states = []
for device in devices:
gpu_rng_states.append(torch.cuda.get_rng_state(device))
try:
yield
finally:
torch.set_rng_state(cpu_rng_state)
for device, gpu_rng_state in zip(devices, gpu_rng_states):
torch.cuda.set_rng_state(gpu_rng_state, device)