forked from joric/pywallet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpywallet.py
1783 lines (1514 loc) · 62.9 KB
/
pywallet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# PyWallet 1.2.3 (Public Domain)
# http://github.com/joric/pywallet
# Most of the actual PyWallet code placed in the public domain.
# PyWallet includes portions of free software, listed below.
# BitcoinTools (wallet.dat handling code, MIT License)
# https://github.com/gavinandresen/bitcointools
# Copyright (c) 2010 Gavin Andresen
# python-ecdsa (EC_KEY implementation, MIT License)
# http://github.com/warner/python-ecdsa
# "python-ecdsa" Copyright (c) 2010 Brian Warner
# Portions written in 2005 by Peter Pearson and placed in the public domain.
# SlowAES (aes.py code, Apache 2 License)
# http://code.google.com/p/slowaes/
# Copyright (c) 2008, Josh Davis (http://www.josh-davis.org),
# Alex Martelli (http://www.aleax.it)
# Ported from C code written by Laurent Haan (http://www.progressive-coding.com)
# Reference implementation for Bech32 and segwit addresses
# https://github.com/sipa/bech32
# Copyright (c) 2017 Pieter Wuille
from bsddb.db import *
import os, sys, time
import json
import logging
import struct
import StringIO
import traceback
import socket
import types
import string
import exceptions
import hashlib
import random
import math
addrtype = 0
json_db = {}
private_keys = []
password = None
def determine_db_dir():
import os
import os.path
import platform
if platform.system() == "Darwin":
return os.path.expanduser("~/Library/Application Support/Bitcoin/")
elif platform.system() == "Windows":
return os.path.join(os.environ['APPDATA'], "Bitcoin")
return os.path.expanduser("~/.bitcoin")
# bech32 reference implementation, https://github.com/sipa/bech32 (segwit_addr.py)
CHARSET = "qpzry9x8gf2tvdw0s3jn54khce6mua7l"
def bech32_polymod(values):
"""Internal function that computes the Bech32 checksum."""
generator = [0x3b6a57b2, 0x26508e6d, 0x1ea119fa, 0x3d4233dd, 0x2a1462b3]
chk = 1
for value in values:
top = chk >> 25
chk = (chk & 0x1ffffff) << 5 ^ value
for i in range(5):
chk ^= generator[i] if ((top >> i) & 1) else 0
return chk
def bech32_hrp_expand(hrp):
"""Expand the HRP into values for checksum computation."""
return [ord(x) >> 5 for x in hrp] + [0] + [ord(x) & 31 for x in hrp]
def bech32_create_checksum(hrp, data):
"""Compute the checksum values given HRP and data."""
values = bech32_hrp_expand(hrp) + data
polymod = bech32_polymod(values + [0, 0, 0, 0, 0, 0]) ^ 1
return [(polymod >> 5 * (5 - i)) & 31 for i in range(6)]
def bech32_encode(hrp, data):
"""Compute a Bech32 string given HRP and data values."""
combined = data + bech32_create_checksum(hrp, data)
return hrp + '1' + ''.join([CHARSET[d] for d in combined])
def convertbits(data, frombits, tobits, pad=True):
"""General power-of-2 base conversion."""
acc = 0
bits = 0
ret = []
maxv = (1 << tobits) - 1
max_acc = (1 << (frombits + tobits - 1)) - 1
for value in data:
if value < 0 or (value >> frombits):
return None
acc = ((acc << frombits) | value) & max_acc
bits += frombits
while bits >= tobits:
bits -= tobits
ret.append((acc >> bits) & maxv)
if pad:
if bits:
ret.append((acc << (tobits - bits)) & maxv)
elif bits >= frombits or ((acc << (tobits - bits)) & maxv):
return None
return ret
def encode(hrp, witver, witprog):
"""Encode a segwit address."""
ret = bech32_encode(hrp, [witver] + convertbits(witprog, 8, 5))
#if decode(hrp, ret) == (None, None):
# return None
return ret
# from the SlowAES project, http://code.google.com/p/slowaes (aes.py)
def append_PKCS7_padding(s):
"""return s padded to a multiple of 16-bytes by PKCS7 padding"""
numpads = 16 - (len(s)%16)
return s + numpads*chr(numpads)
def strip_PKCS7_padding(s):
"""return s stripped of PKCS7 padding"""
if len(s)%16 or not s:
raise ValueError("String of len %d can't be PCKS7-padded" % len(s))
numpads = ord(s[-1])
if numpads > 16:
raise ValueError("String ending with %r can't be PCKS7-padded" % s[-1])
return s[:-numpads]
class AES(object):
# valid key sizes
keySize = dict(SIZE_128=16, SIZE_192=24, SIZE_256=32)
# Rijndael S-box
sbox = [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67,
0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59,
0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7,
0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1,
0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05,
0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83,
0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29,
0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa,
0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c,
0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc,
0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19,
0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee,
0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49,
0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4,
0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6,
0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70,
0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9,
0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e,
0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1,
0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0,
0x54, 0xbb, 0x16]
# Rijndael Inverted S-box
rsbox = [0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3,
0x9e, 0x81, 0xf3, 0xd7, 0xfb , 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f,
0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb , 0x54,
0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b,
0x42, 0xfa, 0xc3, 0x4e , 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24,
0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25 , 0x72, 0xf8,
0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d,
0x65, 0xb6, 0x92 , 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84 , 0x90, 0xd8, 0xab,
0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3,
0x45, 0x06 , 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1,
0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b , 0x3a, 0x91, 0x11, 0x41,
0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6,
0x73 , 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9,
0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e , 0x47, 0xf1, 0x1a, 0x71, 0x1d,
0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b ,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0,
0xfe, 0x78, 0xcd, 0x5a, 0xf4 , 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07,
0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f , 0x60,
0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f,
0x93, 0xc9, 0x9c, 0xef , 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5,
0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61 , 0x17, 0x2b,
0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55,
0x21, 0x0c, 0x7d]
def getSBoxValue(self,num):
"""Retrieves a given S-Box Value"""
return self.sbox[num]
def getSBoxInvert(self,num):
"""Retrieves a given Inverted S-Box Value"""
return self.rsbox[num]
def rotate(self, word):
""" Rijndael's key schedule rotate operation.
Rotate a word eight bits to the left: eg, rotate(1d2c3a4f) == 2c3a4f1d
Word is an char list of size 4 (32 bits overall).
"""
return word[1:] + word[:1]
# Rijndael Rcon
Rcon = [0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97,
0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72,
0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66,
0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d,
0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61,
0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40,
0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc,
0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5,
0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a,
0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d,
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c,
0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4,
0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d,
0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2,
0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74,
0xe8, 0xcb ]
def getRconValue(self, num):
"""Retrieves a given Rcon Value"""
return self.Rcon[num]
def core(self, word, iteration):
"""Key schedule core."""
# rotate the 32-bit word 8 bits to the left
word = self.rotate(word)
# apply S-Box substitution on all 4 parts of the 32-bit word
for i in range(4):
word[i] = self.getSBoxValue(word[i])
# XOR the output of the rcon operation with i to the first part
# (leftmost) only
word[0] = word[0] ^ self.getRconValue(iteration)
return word
def expandKey(self, key, size, expandedKeySize):
"""Rijndael's key expansion.
Expands an 128,192,256 key into an 176,208,240 bytes key
expandedKey is a char list of large enough size,
key is the non-expanded key.
"""
# current expanded keySize, in bytes
currentSize = 0
rconIteration = 1
expandedKey = [0] * expandedKeySize
# set the 16, 24, 32 bytes of the expanded key to the input key
for j in range(size):
expandedKey[j] = key[j]
currentSize += size
while currentSize < expandedKeySize:
# assign the previous 4 bytes to the temporary value t
t = expandedKey[currentSize-4:currentSize]
# every 16,24,32 bytes we apply the core schedule to t
# and increment rconIteration afterwards
if currentSize % size == 0:
t = self.core(t, rconIteration)
rconIteration += 1
# For 256-bit keys, we add an extra sbox to the calculation
if size == self.keySize["SIZE_256"] and ((currentSize % size) == 16):
for l in range(4): t[l] = self.getSBoxValue(t[l])
# We XOR t with the four-byte block 16,24,32 bytes before the new
# expanded key. This becomes the next four bytes in the expanded
# key.
for m in range(4):
expandedKey[currentSize] = expandedKey[currentSize - size] ^ \
t[m]
currentSize += 1
return expandedKey
def addRoundKey(self, state, roundKey):
"""Adds (XORs) the round key to the state."""
for i in range(16):
state[i] ^= roundKey[i]
return state
def createRoundKey(self, expandedKey, roundKeyPointer):
"""Create a round key.
Creates a round key from the given expanded key and the
position within the expanded key.
"""
roundKey = [0] * 16
for i in range(4):
for j in range(4):
roundKey[j*4+i] = expandedKey[roundKeyPointer + i*4 + j]
return roundKey
def galois_multiplication(self, a, b):
"""Galois multiplication of 8 bit characters a and b."""
p = 0
for counter in range(8):
if b & 1: p ^= a
hi_bit_set = a & 0x80
a <<= 1
# keep a 8 bit
a &= 0xFF
if hi_bit_set:
a ^= 0x1b
b >>= 1
return p
#
# substitute all the values from the state with the value in the SBox
# using the state value as index for the SBox
#
def subBytes(self, state, isInv):
if isInv: getter = self.getSBoxInvert
else: getter = self.getSBoxValue
for i in range(16): state[i] = getter(state[i])
return state
# iterate over the 4 rows and call shiftRow() with that row
def shiftRows(self, state, isInv):
for i in range(4):
state = self.shiftRow(state, i*4, i, isInv)
return state
# each iteration shifts the row to the left by 1
def shiftRow(self, state, statePointer, nbr, isInv):
for i in range(nbr):
if isInv:
state[statePointer:statePointer+4] = \
state[statePointer+3:statePointer+4] + \
state[statePointer:statePointer+3]
else:
state[statePointer:statePointer+4] = \
state[statePointer+1:statePointer+4] + \
state[statePointer:statePointer+1]
return state
# galois multiplication of the 4x4 matrix
def mixColumns(self, state, isInv):
# iterate over the 4 columns
for i in range(4):
# construct one column by slicing over the 4 rows
column = state[i:i+16:4]
# apply the mixColumn on one column
column = self.mixColumn(column, isInv)
# put the values back into the state
state[i:i+16:4] = column
return state
# galois multiplication of 1 column of the 4x4 matrix
def mixColumn(self, column, isInv):
if isInv: mult = [14, 9, 13, 11]
else: mult = [2, 1, 1, 3]
cpy = list(column)
g = self.galois_multiplication
column[0] = g(cpy[0], mult[0]) ^ g(cpy[3], mult[1]) ^ \
g(cpy[2], mult[2]) ^ g(cpy[1], mult[3])
column[1] = g(cpy[1], mult[0]) ^ g(cpy[0], mult[1]) ^ \
g(cpy[3], mult[2]) ^ g(cpy[2], mult[3])
column[2] = g(cpy[2], mult[0]) ^ g(cpy[1], mult[1]) ^ \
g(cpy[0], mult[2]) ^ g(cpy[3], mult[3])
column[3] = g(cpy[3], mult[0]) ^ g(cpy[2], mult[1]) ^ \
g(cpy[1], mult[2]) ^ g(cpy[0], mult[3])
return column
# applies the 4 operations of the forward round in sequence
def aes_round(self, state, roundKey):
state = self.subBytes(state, False)
state = self.shiftRows(state, False)
state = self.mixColumns(state, False)
state = self.addRoundKey(state, roundKey)
return state
# applies the 4 operations of the inverse round in sequence
def aes_invRound(self, state, roundKey):
state = self.shiftRows(state, True)
state = self.subBytes(state, True)
state = self.addRoundKey(state, roundKey)
state = self.mixColumns(state, True)
return state
# Perform the initial operations, the standard round, and the final
# operations of the forward aes, creating a round key for each round
def aes_main(self, state, expandedKey, nbrRounds):
state = self.addRoundKey(state, self.createRoundKey(expandedKey, 0))
i = 1
while i < nbrRounds:
state = self.aes_round(state,
self.createRoundKey(expandedKey, 16*i))
i += 1
state = self.subBytes(state, False)
state = self.shiftRows(state, False)
state = self.addRoundKey(state,
self.createRoundKey(expandedKey, 16*nbrRounds))
return state
# Perform the initial operations, the standard round, and the final
# operations of the inverse aes, creating a round key for each round
def aes_invMain(self, state, expandedKey, nbrRounds):
state = self.addRoundKey(state,
self.createRoundKey(expandedKey, 16*nbrRounds))
i = nbrRounds - 1
while i > 0:
state = self.aes_invRound(state,
self.createRoundKey(expandedKey, 16*i))
i -= 1
state = self.shiftRows(state, True)
state = self.subBytes(state, True)
state = self.addRoundKey(state, self.createRoundKey(expandedKey, 0))
return state
# encrypts a 128 bit input block against the given key of size specified
def encrypt(self, iput, key, size):
output = [0] * 16
# the number of rounds
nbrRounds = 0
# the 128 bit block to encode
block = [0] * 16
# set the number of rounds
if size == self.keySize["SIZE_128"]: nbrRounds = 10
elif size == self.keySize["SIZE_192"]: nbrRounds = 12
elif size == self.keySize["SIZE_256"]: nbrRounds = 14
else: return None
# the expanded keySize
expandedKeySize = 16*(nbrRounds+1)
# Set the block values, for the block:
# a0,0 a0,1 a0,2 a0,3
# a1,0 a1,1 a1,2 a1,3
# a2,0 a2,1 a2,2 a2,3
# a3,0 a3,1 a3,2 a3,3
# the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
#
# iterate over the columns
for i in range(4):
# iterate over the rows
for j in range(4):
block[(i+(j*4))] = iput[(i*4)+j]
# expand the key into an 176, 208, 240 bytes key
# the expanded key
expandedKey = self.expandKey(key, size, expandedKeySize)
# encrypt the block using the expandedKey
block = self.aes_main(block, expandedKey, nbrRounds)
# unmap the block again into the output
for k in range(4):
# iterate over the rows
for l in range(4):
output[(k*4)+l] = block[(k+(l*4))]
return output
# decrypts a 128 bit input block against the given key of size specified
def decrypt(self, iput, key, size):
output = [0] * 16
# the number of rounds
nbrRounds = 0
# the 128 bit block to decode
block = [0] * 16
# set the number of rounds
if size == self.keySize["SIZE_128"]: nbrRounds = 10
elif size == self.keySize["SIZE_192"]: nbrRounds = 12
elif size == self.keySize["SIZE_256"]: nbrRounds = 14
else: return None
# the expanded keySize
expandedKeySize = 16*(nbrRounds+1)
# Set the block values, for the block:
# a0,0 a0,1 a0,2 a0,3
# a1,0 a1,1 a1,2 a1,3
# a2,0 a2,1 a2,2 a2,3
# a3,0 a3,1 a3,2 a3,3
# the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
# iterate over the columns
for i in range(4):
# iterate over the rows
for j in range(4):
block[(i+(j*4))] = iput[(i*4)+j]
# expand the key into an 176, 208, 240 bytes key
expandedKey = self.expandKey(key, size, expandedKeySize)
# decrypt the block using the expandedKey
block = self.aes_invMain(block, expandedKey, nbrRounds)
# unmap the block again into the output
for k in range(4):
# iterate over the rows
for l in range(4):
output[(k*4)+l] = block[(k+(l*4))]
return output
class AESModeOfOperation(object):
aes = AES()
# structure of supported modes of operation
modeOfOperation = dict(OFB=0, CFB=1, CBC=2)
# converts a 16 character string into a number array
def convertString(self, string, start, end, mode):
if end - start > 16: end = start + 16
if mode == self.modeOfOperation["CBC"]: ar = [0] * 16
else: ar = []
i = start
j = 0
while len(ar) < end - start:
ar.append(0)
while i < end:
ar[j] = ord(string[i])
j += 1
i += 1
return ar
# Mode of Operation Encryption
# stringIn - Input String
# mode - mode of type modeOfOperation
# hexKey - a hex key of the bit length size
# size - the bit length of the key
# hexIV - the 128 bit hex Initilization Vector
def encrypt(self, stringIn, mode, key, size, IV):
if len(key) % size:
return None
if len(IV) % 16:
return None
# the AES input/output
plaintext = []
iput = [0] * 16
output = []
ciphertext = [0] * 16
# the output cipher string
cipherOut = []
# char firstRound
firstRound = True
if stringIn != None:
for j in range(int(math.ceil(float(len(stringIn))/16))):
start = j*16
end = j*16+16
if end > len(stringIn):
end = len(stringIn)
plaintext = self.convertString(stringIn, start, end, mode)
# print 'PT@%s:%s' % (j, plaintext)
if mode == self.modeOfOperation["CFB"]:
if firstRound:
output = self.aes.encrypt(IV, key, size)
firstRound = False
else:
output = self.aes.encrypt(iput, key, size)
for i in range(16):
if len(plaintext)-1 < i:
ciphertext[i] = 0 ^ output[i]
elif len(output)-1 < i:
ciphertext[i] = plaintext[i] ^ 0
elif len(plaintext)-1 < i and len(output) < i:
ciphertext[i] = 0 ^ 0
else:
ciphertext[i] = plaintext[i] ^ output[i]
for k in range(end-start):
cipherOut.append(ciphertext[k])
iput = ciphertext
elif mode == self.modeOfOperation["OFB"]:
if firstRound:
output = self.aes.encrypt(IV, key, size)
firstRound = False
else:
output = self.aes.encrypt(iput, key, size)
for i in range(16):
if len(plaintext)-1 < i:
ciphertext[i] = 0 ^ output[i]
elif len(output)-1 < i:
ciphertext[i] = plaintext[i] ^ 0
elif len(plaintext)-1 < i and len(output) < i:
ciphertext[i] = 0 ^ 0
else:
ciphertext[i] = plaintext[i] ^ output[i]
for k in range(end-start):
cipherOut.append(ciphertext[k])
iput = output
elif mode == self.modeOfOperation["CBC"]:
for i in range(16):
if firstRound:
iput[i] = plaintext[i] ^ IV[i]
else:
iput[i] = plaintext[i] ^ ciphertext[i]
# print 'IP@%s:%s' % (j, iput)
firstRound = False
ciphertext = self.aes.encrypt(iput, key, size)
# always 16 bytes because of the padding for CBC
for k in range(16):
cipherOut.append(ciphertext[k])
return mode, len(stringIn), cipherOut
# Mode of Operation Decryption
# cipherIn - Encrypted String
# originalsize - The unencrypted string length - required for CBC
# mode - mode of type modeOfOperation
# key - a number array of the bit length size
# size - the bit length of the key
# IV - the 128 bit number array Initilization Vector
def decrypt(self, cipherIn, originalsize, mode, key, size, IV):
# cipherIn = unescCtrlChars(cipherIn)
if len(key) % size:
return None
if len(IV) % 16:
return None
# the AES input/output
ciphertext = []
iput = []
output = []
plaintext = [0] * 16
# the output plain text string
stringOut = ''
# char firstRound
firstRound = True
if cipherIn != None:
for j in range(int(math.ceil(float(len(cipherIn))/16))):
start = j*16
end = j*16+16
if j*16+16 > len(cipherIn):
end = len(cipherIn)
ciphertext = cipherIn[start:end]
if mode == self.modeOfOperation["CFB"]:
if firstRound:
output = self.aes.encrypt(IV, key, size)
firstRound = False
else:
output = self.aes.encrypt(iput, key, size)
for i in range(16):
if len(output)-1 < i:
plaintext[i] = 0 ^ ciphertext[i]
elif len(ciphertext)-1 < i:
plaintext[i] = output[i] ^ 0
elif len(output)-1 < i and len(ciphertext) < i:
plaintext[i] = 0 ^ 0
else:
plaintext[i] = output[i] ^ ciphertext[i]
for k in range(end-start):
stringOut += chr(plaintext[k])
iput = ciphertext
elif mode == self.modeOfOperation["OFB"]:
if firstRound:
output = self.aes.encrypt(IV, key, size)
firstRound = False
else:
output = self.aes.encrypt(iput, key, size)
for i in range(16):
if len(output)-1 < i:
plaintext[i] = 0 ^ ciphertext[i]
elif len(ciphertext)-1 < i:
plaintext[i] = output[i] ^ 0
elif len(output)-1 < i and len(ciphertext) < i:
plaintext[i] = 0 ^ 0
else:
plaintext[i] = output[i] ^ ciphertext[i]
for k in range(end-start):
stringOut += chr(plaintext[k])
iput = output
elif mode == self.modeOfOperation["CBC"]:
output = self.aes.decrypt(ciphertext, key, size)
for i in range(16):
if firstRound:
plaintext[i] = IV[i] ^ output[i]
else:
plaintext[i] = iput[i] ^ output[i]
firstRound = False
if originalsize is not None and originalsize < end:
for k in range(originalsize-start):
stringOut += chr(plaintext[k])
else:
for k in range(end-start):
stringOut += chr(plaintext[k])
iput = ciphertext
return stringOut
# end of aes.py code
# pywallet crypter implementation
crypter = None
try:
from Crypto.Cipher import AES
crypter = 'pycrypto'
except:
pass
class Crypter_pycrypto( object ):
def SetKeyFromPassphrase(self, vKeyData, vSalt, nDerivIterations, nDerivationMethod):
if nDerivationMethod != 0:
return 0
data = vKeyData + vSalt
for i in xrange(nDerivIterations):
data = hashlib.sha512(data).digest()
self.SetKey(data[0:32])
self.SetIV(data[32:32+16])
return len(data)
def SetKey(self, key):
self.chKey = key
def SetIV(self, iv):
self.chIV = iv[0:16]
def Encrypt(self, data):
return AES.new(self.chKey,AES.MODE_CBC,self.chIV).encrypt(data)[0:32]
def Decrypt(self, data):
return AES.new(self.chKey,AES.MODE_CBC,self.chIV).decrypt(data)[0:32]
try:
if not crypter:
import ctypes
import ctypes.util
ssl = ctypes.cdll.LoadLibrary (ctypes.util.find_library ('ssl') or 'libeay32')
crypter = 'ssl'
except:
pass
class Crypter_ssl(object):
def __init__(self):
self.chKey = ctypes.create_string_buffer (32)
self.chIV = ctypes.create_string_buffer (16)
def SetKeyFromPassphrase(self, vKeyData, vSalt, nDerivIterations, nDerivationMethod):
if nDerivationMethod != 0:
return 0
strKeyData = ctypes.create_string_buffer (vKeyData)
chSalt = ctypes.create_string_buffer (vSalt)
return ssl.EVP_BytesToKey(ssl.EVP_aes_256_cbc(), ssl.EVP_sha512(), chSalt, strKeyData,
len(vKeyData), nDerivIterations, ctypes.byref(self.chKey), ctypes.byref(self.chIV))
def SetKey(self, key):
self.chKey = ctypes.create_string_buffer(key)
def SetIV(self, iv):
self.chIV = ctypes.create_string_buffer(iv)
def Encrypt(self, data):
buf = ctypes.create_string_buffer(len(data) + 16)
written = ctypes.c_int(0)
final = ctypes.c_int(0)
ctx = ssl.EVP_CIPHER_CTX_new()
ssl.EVP_CIPHER_CTX_init(ctx)
ssl.EVP_EncryptInit_ex(ctx, ssl.EVP_aes_256_cbc(), None, self.chKey, self.chIV)
ssl.EVP_EncryptUpdate(ctx, buf, ctypes.byref(written), data, len(data))
output = buf.raw[:written.value]
ssl.EVP_EncryptFinal_ex(ctx, buf, ctypes.byref(final))
output += buf.raw[:final.value]
return output
def Decrypt(self, data):
buf = ctypes.create_string_buffer(len(data) + 16)
written = ctypes.c_int(0)
final = ctypes.c_int(0)
ctx = ssl.EVP_CIPHER_CTX_new()
ssl.EVP_CIPHER_CTX_init(ctx)
ssl.EVP_DecryptInit_ex(ctx, ssl.EVP_aes_256_cbc(), None, self.chKey, self.chIV)
ssl.EVP_DecryptUpdate(ctx, buf, ctypes.byref(written), data, len(data))
output = buf.raw[:written.value]
ssl.EVP_DecryptFinal_ex(ctx, buf, ctypes.byref(final))
output += buf.raw[:final.value]
return output
class Crypter_pure(object):
def __init__(self):
self.m = AESModeOfOperation()
self.cbc = self.m.modeOfOperation["CBC"]
self.sz = self.m.aes.keySize["SIZE_256"]
def SetKeyFromPassphrase(self, vKeyData, vSalt, nDerivIterations, nDerivationMethod):
if nDerivationMethod != 0:
return 0
data = vKeyData + vSalt
for i in xrange(nDerivIterations):
data = hashlib.sha512(data).digest()
self.SetKey(data[0:32])
self.SetIV(data[32:32+16])
return len(data)
def SetKey(self, key):
self.chKey = [ord(i) for i in key]
def SetIV(self, iv):
self.chIV = [ord(i) for i in iv]
def Encrypt(self, data):
mode, size, cypher = self.m.encrypt(data, self.cbc, self.chKey, self.sz, self.chIV)
return ''.join(map(chr, cypher))
def Decrypt(self, data):
chData = [ord(i) for i in data]
return self.m.decrypt(chData, self.sz, self.cbc, self.chKey, self.sz, self.chIV)
# secp256k1
_p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FL
_r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141L
_b = 0x0000000000000000000000000000000000000000000000000000000000000007L
_a = 0x0000000000000000000000000000000000000000000000000000000000000000L
_Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L
_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8L
# python-ecdsa code (EC_KEY implementation)
class CurveFp( object ):
def __init__( self, p, a, b ):
self.__p = p
self.__a = a
self.__b = b
def p( self ):
return self.__p
def a( self ):
return self.__a
def b( self ):
return self.__b
def contains_point( self, x, y ):
return ( y * y - ( x * x * x + self.__a * x + self.__b ) ) % self.__p == 0
class Point( object ):
def __init__( self, curve, x, y, order = None ):
self.__curve = curve
self.__x = x
self.__y = y
self.__order = order
if self.__curve: assert self.__curve.contains_point( x, y )
if order: assert self * order == INFINITY
def __add__( self, other ):
if other == INFINITY: return self
if self == INFINITY: return other
assert self.__curve == other.__curve
if self.__x == other.__x:
if ( self.__y + other.__y ) % self.__curve.p() == 0:
return INFINITY
else:
return self.double()
p = self.__curve.p()
l = ( ( other.__y - self.__y ) * \
inverse_mod( other.__x - self.__x, p ) ) % p
x3 = ( l * l - self.__x - other.__x ) % p
y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
return Point( self.__curve, x3, y3 )
def __mul__( self, other ):
def leftmost_bit( x ):
assert x > 0
result = 1L
while result <= x: result = 2 * result
return result / 2
e = other
if self.__order: e = e % self.__order
if e == 0: return INFINITY
if self == INFINITY: return INFINITY
assert e > 0
e3 = 3 * e
negative_self = Point( self.__curve, self.__x, -self.__y, self.__order )
i = leftmost_bit( e3 ) / 2
result = self
while i > 1:
result = result.double()
if ( e3 & i ) != 0 and ( e & i ) == 0: result = result + self
if ( e3 & i ) == 0 and ( e & i ) != 0: result = result + negative_self
i = i / 2
return result
def __rmul__( self, other ):
return self * other
def __str__( self ):
if self == INFINITY: return "infinity"
return "(%d,%d)" % ( self.__x, self.__y )
def double( self ):
if self == INFINITY:
return INFINITY
p = self.__curve.p()
a = self.__curve.a()
l = ( ( 3 * self.__x * self.__x + a ) * \
inverse_mod( 2 * self.__y, p ) ) % p
x3 = ( l * l - 2 * self.__x ) % p
y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
return Point( self.__curve, x3, y3 )
def x( self ):
return self.__x
def y( self ):
return self.__y
def curve( self ):
return self.__curve
def order( self ):
return self.__order
INFINITY = Point( None, None, None )
def inverse_mod( a, m ):
if a < 0 or m <= a: a = a % m
c, d = a, m
uc, vc, ud, vd = 1, 0, 0, 1
while c != 0:
q, c, d = divmod( d, c ) + ( c, )
uc, vc, ud, vd = ud - q*uc, vd - q*vc, uc, vc
assert d == 1
if ud > 0: return ud
else: return ud + m
class Signature( object ):
def __init__( self, r, s ):
self.r = r
self.s = s
class Public_key( object ):
def __init__( self, generator, point ):
self.curve = generator.curve()
self.generator = generator
self.point = point
n = generator.order()
if not n:
raise RuntimeError, "Generator point must have order."
if not n * point == INFINITY:
raise RuntimeError, "Generator point order is bad."
if point.x() < 0 or n <= point.x() or point.y() < 0 or n <= point.y():
raise RuntimeError, "Generator point has x or y out of range."
def verifies( self, hash, signature ):
G = self.generator
n = G.order()
r = signature.r
s = signature.s
if r < 1 or r > n-1: return False
if s < 1 or s > n-1: return False
c = inverse_mod( s, n )
u1 = ( hash * c ) % n
u2 = ( r * c ) % n
xy = u1 * G + u2 * self.point
v = xy.x() % n
return v == r
class Private_key( object ):
def __init__( self, public_key, secret_multiplier ):
self.public_key = public_key
self.secret_multiplier = secret_multiplier
def der( self ):
hex_der_key = '06052b8104000a30740201010420' + \
'%064x' % self.secret_multiplier + \
'a00706052b8104000aa14403420004' + \
'%064x' % self.public_key.point.x() + \
'%064x' % self.public_key.point.y()
return hex_der_key.decode('hex')
def sign( self, hash, random_k ):
G = self.public_key.generator
n = G.order()
k = random_k % n
p1 = k * G
r = p1.x()
if r == 0: raise RuntimeError, "amazingly unlucky random number r"
s = ( inverse_mod( k, n ) * \
( hash + ( self.secret_multiplier * r ) % n ) ) % n
if s == 0: raise RuntimeError, "amazingly unlucky random number s"
return Signature( r, s )
class EC_KEY(object):
def __init__( self, secret ):
curve = CurveFp( _p, _a, _b )
generator = Point( curve, _Gx, _Gy, _r )
self.pubkey = Public_key( generator, generator * secret )
self.privkey = Private_key( self.pubkey, secret )
self.secret = secret
# end of python-ecdsa code
# pywallet openssl private key implementation
def i2d_ECPrivateKey(pkey, compressed=False):
if compressed: