forked from microsoft/Quantum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProgram.cs
292 lines (243 loc) · 10.8 KB
/
Program.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
using System;
using System.IO;
using System.Net;
using System.Net.Sockets;
using System.Threading;
using System.Collections.Generic;
using Newtonsoft.Json;
using Microsoft.Quantum.Simulation.Simulators;
using Microsoft.Quantum.Chemistry.Fermion;
using Microsoft.Quantum.Chemistry.OrbitalIntegrals;
using Microsoft.Quantum.Chemistry.QSharpFormat;
using System.Runtime.InteropServices;
using System.Linq;
using Mono.Options;
namespace Microsoft.Quantum.Chemistry.Samples.LiH
{
using Microsoft.Quantum.Chemistry.Broombridge;
using Microsoft.Quantum.Chemistry.Samples.Hydrogen;
internal static class LiHSimulation
{
// We now plot estimates of the ground state energy for
// molecular Hydrogen as a function of bond distance.
// Here, we load a list of Lithium Hydride Hamiltonians from the included files.
internal static string[] bondLengths = new string[]
{
"0.800","1.000","1.200","1.400","1.500","1.550","1.580","1.600","1.624",
"1.640","1.680","1.700","1.800","2.000","2.200","2.500","2.700","3.000",
"3.200","3.500","4.000","5.000"
};
internal static string[] filenames = bondLengths.Select(o => Path.Combine("..","IntegralData","YAML","LiHData",$@"integrals_lih_sto-3g_{o}.nw.out.yaml")).ToArray();
internal static List<ElectronicStructureProblem> problemData =
filenames.Select(filename =>
{
using var reader = File.OpenText(filename);
return BroombridgeSerializer
.Deserialize(reader)
.Single();
})
.ToList();
// Order of Trotter-Suzuki integrator.
public static Int64 IntegratorOrder = 1;
// Choose bits of precision in quantum phase estimation
public static Int64 bitsOfPrecision = 8;
// Choose the Trotter step size.
public static Double trotterStepSize = 0.5;
// Perform quantum simulation of Hamiltonian at desired bond length and
// return estimate of energy.
internal static (Double, Double) GetSimulationResult(int idxBond, string inputState = "Greedy")
{
// Choose the desired Hamiltonian indexed by `idx`.
var problem = problemData.ElementAt(idxBond);
// Bond length conversion from Bohr radius to Angstrom
var bondLength = Double.Parse(bondLengths[idxBond]);
// Create fermion representation of Hamiltonian
var fermionHamiltonian = problem
.OrbitalIntegralHamiltonian
.ToFermionHamiltonian(IndexConvention.UpDown);
// Crete Pauli representation of Hamiltonian using
// the Jordan–Wigner encoding.
var pauliHamiltonian = fermionHamiltonian
.ToPauliHamiltonian(Paulis.QubitEncoding.JordanWigner);
// Create input wavefunction.
var wavefunction = inputState == "Greedy" ?
fermionHamiltonian.CreateHartreeFockState(problem.NElectrons) :
problem.InitialStates[inputState].ToIndexing(IndexConvention.UpDown);
// Package Hamiltonian and wavefunction data into a format
// consumed by Q#.
var qSharpData = QSharpFormat.Convert.ToQSharpFormat(
pauliHamiltonian.ToQSharpFormat(),
wavefunction.ToQSharpFormat());
// Invoke quantum simulator and run `GetEnergyByTrotterization` in the first
// molecular Hydrogen sample.
using (var qSim = new QuantumSimulator())
{
Console.WriteLine($"Estimating at bond length {idxBond}:");
var (phaseEst, energyEst) = GetEnergyByTrotterization.Run(qSim, qSharpData, bitsOfPrecision, trotterStepSize, IntegratorOrder).Result;
return (bondLength, energyEst);
}
}
}
#region Real-time plotting functionality
class ServerThread
{
private static byte[] SerializeResponse(string respType, object response) =>
System.Text.Encoding.UTF8.GetBytes(
JsonConvert.SerializeObject(
new Dictionary<string, object>
{
{ "type", respType },
{ "data", response }
}
) + "\f"
);
private static void SendPlotPoints(NetworkStream stream)
{
// Plot theory data points first
foreach (var idxBond in Enumerable.Range(0, LiHSimulation.problemData.Count))
{
var tst = LiHSimulation.problemData;
var bondLength = Double.Parse(LiHSimulation.bondLengths[idxBond]);
var hamData = LiHSimulation.problemData[idxBond];
var energies = hamData.InitialStates.ToDictionary(o => o.Key, o => o.Value.Energy);
var offset = hamData.EnergyOffset;
foreach (var (k, v) in energies)
{
var response = SerializeResponse(
"plotPoint",
new Dictionary<string, object>
{
{ "source", k },
{ "bondLength", bondLength },
{ "theoreticalEnergy", v },
}
);
stream.Write(response, 0, response.Length);
}
}
// Now plot simulation results
string[] states = new string[] { "|G>", "|E1>", "|E2>", "|E3>", "|E4>", "|E5>" };
foreach (var state in states)
{
foreach (var idxBond in Enumerable.Range(0, LiHSimulation.problemData.Count))
{
var (bondLength, energyEst) = LiHSimulation.GetSimulationResult(idxBond, state);
var response = SerializeResponse(
"plotPoint",
new Dictionary<string, object>
{
{ "source", "simulation" },
{ "bondLength", bondLength },
{ "estEnergy", energyEst }
}
);
stream.Write(response, 0, response.Length);
}
}
}
public static void Start()
{
TcpListener server = null;
try
{
var port = 8010;
var localAddress = IPAddress.Parse("127.0.0.1");
server = new TcpListener(localAddress, port);
server.Start();
while (true)
{
var client = server.AcceptTcpClient();
Console.WriteLine("@@ Connected to client. @@");
// Allocate a buffer.
var buffer = new Byte[256];
var stream = client.GetStream();
var nBytesRead = -1;
while ((nBytesRead = stream.Read(buffer, 0, buffer.Length)) != 0)
{
var rawMessage = System.Text.Encoding.UTF8.GetString(buffer, 0, nBytesRead);
Console.WriteLine($"@@ Received from client: {rawMessage} @@");
var message = JsonConvert.DeserializeObject<Dictionary<string, object>>(rawMessage);
message.TryGetValue("type", out var messageType);
message.TryGetValue("data", out var messageData);
if ((string)messageType == "event" && (string)messageData == "readyToPlot")
{
Console.WriteLine("@@ Got request for plotting data, running simulator. @@");
SendPlotPoints(stream);
}
}
}
}
finally
{
server.Stop();
}
}
}
class Program
{
static string FindOnPath(string fileName)
{
foreach (var candidateRoot in (
System.Environment.GetEnvironmentVariable("PATH").Split(
Path.PathSeparator
))
)
{
var path = Path.Combine(candidateRoot.Trim(), fileName);
if (File.Exists(path))
{
return path;
}
}
throw new FileNotFoundException($"Did not find {fileName} on $Env:PATH.");
}
static void Main(string[] args)
{
// These are arguments that can be set from command line.
var integratorOrder = 1L;
var stepSize = 0.5;
var bitsOfPrecision = 8L;
var options = new OptionSet {
{ "o|integrator-order=", "Order of Trotter-Suzuki integrator", (Int64 o) => integratorOrder = o},
{ "s|step-size=", "Step size of Trotter-Suzuki integrator", (Double s) => stepSize = s},
{ "b|bits-precision=", "Bits of precision in quantum phase estimation algorithm", (Int64 b) => bitsOfPrecision = b},
};
LiHSimulation.IntegratorOrder = integratorOrder;
LiHSimulation.trotterStepSize = stepSize;
LiHSimulation.bitsOfPrecision = bitsOfPrecision;
Console.WriteLine("Starting Simulation Server...");
var serverThread = new Thread(ServerThread.Start);
serverThread.Start();
Console.WriteLine("Starting GUI...");
var process = new System.Diagnostics.Process
{
StartInfo = new System.Diagnostics.ProcessStartInfo
{
FileName = FindOnPath(
RuntimeInformation.IsOSPlatform(OSPlatform.Windows)
? "npm.cmd" : "npm"
),
UseShellExecute = false,
Arguments = "start",
CreateNoWindow = true
}
};
process.Start();
process.WaitForExit();
// Check the npm process' exit code to make sure that npm
// start actually ran correctly.
while (!process.HasExited) {
System.Threading.Thread.Sleep(500);
}
if (process.ExitCode != 0) {
System.Console.WriteLine($"GUI returned exit code {process.ExitCode}; did you run npm install?");
}
// If we got this far, go on and call Environment's exit method,
// killing the server thread.
System.Environment.Exit(process.ExitCode);
}
}
#endregion
}