generated from aaivu/aaivu-project-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_engineering.py
424 lines (280 loc) · 12.8 KB
/
feature_engineering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# -*- coding: utf-8 -*-
"""feature_engineering.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1QrWtHhYUCMMPKbNYnRl4I9TZw_g5tmzH
"""
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from datetime import datetime,date
from google.colab import files
import glob
import os
from google.colab import drive
drive.mount('/content/drive')
path= '/content/drive/Shareddrives/MSc - Shiveswarran/Processed data/New data/bus_stop_times_all_new.csv'
stop_times = pd.read_csv(path)
stop_times
stop_times['week_no'] = pd.to_datetime(stop_times['date']).dt.isocalendar().week
#stop_times = stop_times.loc[stop_times['week_no']<5]
stop_times
df = stop_times
df['week_no'].unique()
old=[]
new=[]
old = list(range(26,45))
new = list(range(1,20))
d = dict(zip(old,new))
d
df['week_no'] = list(map(lambda x: d[x] , df['week_no']))
df
df=df[df['direction']==1]
long_stops= [101,105,109,113]
dfl=df.loc[df['bus_stop'].isin(long_stops)]
short_stops= [102,106,107,108,110,111,112,114]
dfs=df.loc[df['bus_stop'].isin(short_stops)]
mean = np.mean(dfs['dwell_time_in_seconds'], axis=0)
sd = np.std(dfs['dwell_time_in_seconds'], axis=0)
mean
sd
df = df.drop(df[df['dwell_time_in_seconds']>600].index )
df
def fill_nan_median(ts,medians):
ix = pd.to_datetime(ts.index)
ts.index = pd.to_datetime(ix.dayofweek * 24 * 60 * 60 + x.hour * 60 * 60 + x.minute * 60, unit = 's')
ts = ts.fillna(medians)
ts.index = ix
return ts
dft = df.groupby('week_no')
groupings = list(dft.groups.keys())
df.reset_index(drop = True, inplace = True)
for i in range(3,len(groupings)):
curr = dft.get_group(groupings[i])
prev = dft.get_group(groupings[i-1])
prev2 = dft.get_group(groupings[i-2])
prev3 = dft.get_group(groupings[i-3])
#curr['dt(t-1)']= prev['day_of_week']
for index, row in curr.iterrows():
day = row['day_of_week']
time = row['time_of_day']
stop = row['bus_stop']
agg = prev.loc[(prev['day_of_week']==day) & (prev['time_of_day']==time) & (prev['bus_stop']==stop)]
agg2 = prev2.loc[(prev2['day_of_week']==day) & (prev2['time_of_day']==time) & (prev2['bus_stop']==stop)]
agg3 = prev3.loc[(prev3['day_of_week']==day) & (prev3['time_of_day']==time) & (prev3['bus_stop']==stop)]
df.at[index,'dt(w-1)'] = round(agg['dwell_time_in_seconds'].mean(),1)
df.at[index,'dt(w-2)'] = round(agg2['dwell_time_in_seconds'].mean(),1)
df.at[index,'dt(w-3)'] = round(agg3['dwell_time_in_seconds'].mean(),1)
df['dt(w-1)'].fillna(df.groupby(['bus_stop','time_of_day'])['dwell_time_in_seconds'].transform('mean'), inplace = True)
df['dt(w-2)'].fillna(df.groupby(['bus_stop','time_of_day'])['dwell_time_in_seconds'].transform('mean'), inplace = True)
df['dt(w-3)'].fillna(df.groupby(['bus_stop','time_of_day'])['dwell_time_in_seconds'].transform('mean'), inplace = True)
df
for name,group in df.groupby('date'):
for index, row in group.iterrows():
time = row['time_of_day']
stop = row['bus_stop']
df.at[index,'dt(t-1)'] = round(group['dwell_time_in_seconds'][(group['time_of_day']==(time-1)) & (group['bus_stop']==stop) ].mean(),1)
df.at[index,'dt(t-2)'] = round(group['dwell_time_in_seconds'][(group['time_of_day']==(time-2)) & (group['bus_stop']==stop) ].mean(),1)
df
df['dt(t-1)'].fillna(df.groupby(['bus_stop','time_of_day'])['dwell_time_in_seconds'].transform('mean'), inplace = True)
df['dt(t-2)'].fillna(df.groupby(['bus_stop','time_of_day'])['dwell_time_in_seconds'].transform('mean'), inplace = True)
for name, group in df.groupby('trip_id'):
for index, row in group.iterrows():
stop = row['bus_stop']
trip = row['trip_id']
df.at[index,'dt(n-1)'] = round(group['dwell_time_in_seconds'][(group['bus_stop']==(stop-1))].mean(),1)
df.at[index,'dt(n-2)'] = round(group['dwell_time_in_seconds'][(group['bus_stop']==(stop-2))].mean(),1)
df.at[index,'dt(n-3)'] = round(group['dwell_time_in_seconds'][(group['bus_stop']==(stop-3))].mean(),1)
df['dt(n-1)'].fillna(df.groupby(['bus_stop','time_of_day'])['dwell_time_in_seconds'].transform('mean'), inplace = True)
df['dt(n-2)'].fillna(df.groupby(['bus_stop','time_of_day'])['dwell_time_in_seconds'].transform('mean'), inplace = True)
df['dt(n-3)'].fillna(df.groupby(['bus_stop','time_of_day'])['dwell_time_in_seconds'].transform('mean'), inplace = True)
df[['dt(w-1)','dt(w-2)', 'dt(w-3)', 'dt(t-1)', 'dt(t-2)', 'dt(n-1)', 'dt(n-2)','dt(n-3)']] = df[['dt(w-1)','dt(w-2)', 'dt(w-3)', 'dt(t-1)', 'dt(t-2)', 'dt(n-1)', 'dt(n-2)','dt(n-3)']].apply(pd.Series.round)
df
def download_csv(data,filename):
filename= filename + '.csv'
data.to_csv(filename, encoding = 'utf-8-sig',index= False)
files.download(filename)
download_csv(df,'bus_stop_times_feature_added_new')
train = df[df['week_no']<20]
test = df[df['week_no']>19]
np.corrcoef(df['dwell_time_in_seconds'],df['dt(w-1)'])
np.corrcoef(df['dwell_time_in_seconds'],df['dt(t-1)'])
np.corrcoef(df['dwell_time_in_seconds'],df['dt(w-2)'])
X = dfs[['deviceid','bus_stop','day_of_week','weekday/end','time_of_day','dt(t-1)','dt(t-2)','dt(w-1)','dt(w-2)','dt(w-3)','dt(n-1)','dt(n-2)','dt(n-3)']]
X.reset_index(drop = True, inplace = True)
X
ohd=pd.get_dummies(X,columns=['bus_stop','deviceid'])
X = ohd
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
#scaled = scaler.fit_transform(X[['dt(t-1)','dt(t-2)','dt(w-1)','dt(w-2)','dt(w-3)','dt(n-1)','dt(n-2)','dt(n-3)']])
X= pd.DataFrame(scaler.fit_transform(X),index=X.index,columns=X[['dt(t-1)','dt(t-2)','dt(w-1)','dt(w-2)','dt(w-3)','dt(n-1)','dt(n-2)','dt(n-3)']])
#scaled = pd.DataFrame(scaled)
#scaled
X
#X = pd.concat([X, scaled], axis=1)
X.columns
X = X.drop(columns = ['dt(t-1)',
'dt(t-2)', 'dt(w-1)', 'dt(w-2)', 'dt(w-3)',
'dt(n-1)', 'dt(n-2)', 'dt(n-3)'])
X
X = X.drop(columns=['day_of_week'])
X.columns = X.columns.astype(str)
X1 = df[['deviceid','bus_stop','day_of_week','weekday/end','time_of_day']]
X1
X.columns
X_train= train[['deviceid','bus_stop','day_of_week','weekday/end','time_of_day','dt(t-1)','dt(t-2)','dt(w-1)','dt(w-2)','dt(w-3)','dt(n-1)','dt(n-2)','dt(n-3)']]
X_test = test[['deviceid','bus_stop','day_of_week','weekday/end','time_of_day','dt(t-1)','dt(t-2)','dt(w-1)','dt(w-2)','dt(w-3)','dt(n-1)','dt(n-2)','dt(n-3)']]
X1_train = train[['deviceid','bus_stop','day_of_week','weekday/end','time_of_day']]
X1_test = test[['deviceid','bus_stop','day_of_week','weekday/end','time_of_day']]
feature_names = ['deviceid','bus_stop','day_of_week','weekday/end','time_of_day','dt(t-1)','dt(t-2)','dt(w-1)','dt(w-2)','dt(w-3)','dt(n-1)','dt(n-2)','dt(n-3)']
"""for dwelltime at one bus stop"""
X_train= train[['deviceid','weekday/end','time_of_day','dt(t-1)','dt(t-2)','dt(w-1)','dt(w-2)','dt(w-3)','dt(n-1)','dt(n-2)','dt(n-3)']]
X_test = test[['deviceid','weekday/end','time_of_day','dt(t-1)','dt(t-2)','dt(w-1)','dt(w-2)','dt(w-3)','dt(n-1)','dt(n-2)','dt(n-3)']]
X1_train = train[['deviceid','day_of_week','weekday/end','time_of_day']]
X1_test = test[['deviceid','day_of_week','weekday/end','time_of_day']]
feature_names = ['deviceid','weekday/end','time_of_day','dt(t-1)','dt(t-2)','dt(w-1)','dt(w-2)','dt(w-3)','dt(n-1)','dt(n-2)','dt(n-3)']
X1_test
y = dfs[['dwell_time_in_seconds']]
y_train= train[['dwell_time_in_seconds']]
y_test= test[['dwell_time_in_seconds']]
y
y.reset_index(drop = True, inplace = True)
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn import linear_model
lr = linear_model.LinearRegression()
scores = cross_val_score(lr, X, y, scoring='r2', cv=KFold(n_splits=10,shuffle=False )) # shuffle=False
rmse = cross_val_score(lr, X, y, scoring='neg_mean_squared_error', cv=KFold(n_splits=10,shuffle=False)) #
rmse = np.sqrt(list(-rmse))
lr_r2 = scores.mean()
lr_rmse = rmse.mean()
print('lr_r2 =' + str(lr_r2))
print('lr_rmse =' + str(lr_rmse))
from sklearn.svm import SVR
svr = SVR(kernel = 'rbf')
scores = cross_val_score(svr, X, y, scoring='r2', cv=KFold(n_splits=8, shuffle=False))
rmse = cross_val_score(svr, X, y, scoring='neg_mean_squared_error', cv=KFold(n_splits=8, shuffle=False))
rmse = np.sqrt(list(-rmse))
svr_r2 = scores.mean()
svr_rmse = rmse.mean()
print('svr_r2 =' + str(svr_r2))
print('svr_rmse =' + str(svr_rmse))
from sklearn.tree import DecisionTreeRegressor
dt = DecisionTreeRegressor(random_state=0)
scores = cross_val_score(dt, X, y, scoring='r2', cv=KFold(n_splits=5,shuffle=False))
rmse = cross_val_score(dt, X, y, scoring='neg_mean_squared_error', cv=KFold(n_splits=5,shuffle=False))
rmse = np.sqrt(list(-rmse))
dt_r2 = scores.mean()
dt_rmse = rmse.mean()
print('dt_r2 =' + str(dt_r2))
print('dt_rmse =' + str(dt_rmse))
from sklearn.ensemble import RandomForestRegressor
rfr = RandomForestRegressor(n_estimators = 100,max_depth = 5, random_state = 42)
scores = cross_val_score(rfr, X, y, scoring='r2', cv=KFold(n_splits=5,shuffle=False)) #,
rmse = cross_val_score(rfr, X, y, scoring='neg_mean_squared_error', cv=KFold(n_splits=5,shuffle=False)) #,
rmse = np.sqrt(list(-rmse))
rfr_r2 = scores.mean()
rfr_rmse = rmse.mean()
print('rfr_r2 =' + str(rfr_r2))
print('rfr_rmse =' + str(rfr_rmse))
import xgboost as xg
xgb= xg.XGBRegressor(n_estimators = 100)
scores = cross_val_score(xgb, X, y, scoring='r2', cv=KFold(n_splits=5,shuffle=False))
rmse = cross_val_score(xgb, X, y, scoring='neg_mean_squared_error', cv=KFold(n_splits=5,shuffle=False))
rmse = np.sqrt(list(-rmse))
xgb_r2 = scores.mean()
xgb_rmse = rmse.mean()
print('xgb_r2 =' + str(xgb_r2))
print('xgb_rmse =' + str(xgb_rmse))
param={'learning_rate':[0.01,0.1,1].
'max_depth':[]}
rs =
xgb.fit(X_train,y_train)
xgb.feature_importances_
plt.barh(feature_names, xgb.feature_importances_)
!pip install shap
import shap
explainer = shap.TreeExplainer(xgb)
shap_values = explainer.shap_values(X_test)
shap.summary_plot(shap_values, X_test, plot_type="bar")
from sklearn.inspection import permutation_importance
perm_importance = permutation_importance(xgb, X_test, y_test)
plt.barh(feature_names, perm_importance.importances_mean)
plt.xlabel("Permutation Importance")
def correlation_heatmap(train):
correlations = train.corr()
fig, ax = plt.subplots(figsize=(10,10))
sns.heatmap(correlations, vmax=1.0, center=0, fmt='.2f', cmap="YlGnBu",
square=True, linewidths=.5, annot=True, cbar_kws={"shrink": .70}
)
plt.show();
correlation_heatmap(X[feature_names])
!pip install boruta
from boruta import BorutaPy
feature_selector = BorutaPy(
verbose=2,
estimator=rfr,
n_estimators='auto',
max_iter=10,
random_state=42,
)
feature_selector.fit(np.array(X), np.array(y))
print("\n------Support and Ranking for each feature------")
for i in range(len(feature_selector.support_)):
if feature_selector.support_[i]:
print("Passes the test: ", X.columns[i],
" - Ranking: ", feature_selector.ranking_[i])
else:
print("Doesn't pass the test: ",
X.columns[i], " - Ranking: ", feature_selector.ranking_[i])
X_filtered=feature_selector.transform(np.array (X))
scores = cross_val_score(rfr, X_filtered, y, scoring='r2', cv=KFold(n_splits=4, shuffle=False))
rmse = cross_val_score(rfr, X_filtered, y, scoring='neg_mean_squared_error', cv=KFold(n_splits=4, shuffle=False))
rmse = np.sqrt(list(-rmse))
rfr_r2 = scores.mean()
rfr_rmse = rmse.mean()
print('rfr_r2 =' + str(rfr_r2))
print('rfr_rmse =' + str(rfr_rmse))
pip install catboost
from catboost import Pool, CatBoostRegressor
cbr = CatBoostRegressor(iterations=2,
depth=2,
learning_rate=1,
loss_function='RMSE')
scores = cross_val_score(cbr, X, y, scoring='r2', cv=KFold(n_splits=4, shuffle=False))
rmse = cross_val_score(cbr, X, y, scoring='neg_mean_squared_error', cv=KFold(n_splits=4, shuffle=False))
rmse = np.sqrt(list(-rmse))
cbr_r2 = scores.mean()
cbr_rmse = rmse.mean()
print('cbr_r2 =' + str(cbr_r2))
print('cbr_rmse =' + str(cbr_rmse))
!pip install lightgbm
import lightgbm as lgb
hyper_params = {
'task': 'train',
'boosting_type': 'gbdt',
'objective': 'regression',
'metric': ['l1','l2'],
'learning_rate': 0.005,
'feature_fraction': 0.9,
'bagging_fraction': 0.7,
'bagging_freq': 10,
'verbose': 0,
"max_depth": 8,
"num_leaves": 128,
"max_bin": 512,
"num_iterations": 100000
}
lgb=lgb.LGBMRegressor(**hyper_params)
scores = cross_val_score(lgb, X, y, scoring='r2', cv=KFold(n_splits=4, shuffle=False))
rmse = cross_val_score(lgb, X, y, scoring='neg_mean_squared_error', cv=KFold(n_splits=4, shuffle=False))
rmse = np.sqrt(list(-rmse))
lgb_r2 = scores.mean()
lgb_rmse = rmse.mean()
print('lgb_r2 =' + str(lgb_r2))
print('lgb_rmse =' + str(lgb_rmse))
df = stop_times.append([trip_ends])
df['direction'] = df.groupby('trip_id')['direction'].ffill().bfill()
df