-
Notifications
You must be signed in to change notification settings - Fork 0
/
params.yaml
387 lines (340 loc) · 6.92 KB
/
params.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
settings:
n_jobs: 26
backend: joblib
mlflow_tracking_uri: http://localhost:5000
plot_format: pdf
# only valid for `scripts/run_pipeline.py`
stages:
fetch_data: false
preprocess_data: false
sample_data: false
calculate_values: false
calculate_threshold_characteristics: false
evaluate_curves: false
evaluate_metrics: false
render_plots: true
shutdown: false
time:
active: true
threshold_characteristics:
active: false
valuation_method: banzhaf_shapley # Method used to calculate the threshold characteristics.
model: logistic_regression # Default model to use for determining the values
max_plotting_percentage: 1e-4 # Threshold for stopping plotting in direction of x-axis.
active:
experiments:
- point_removal
- noise_removal
models:
- logistic_regression
- knn
- svm
- gradient_boosting_classifier
datasets:
- cifar10
- click
- covertype
- cpu
- diabetes
- fmnist_binary
- mnist_binary
- mnist_multi
- phoneme
valuation_methods:
- random
- classwise_shapley
- tmc_shapley
- beta_shapley
- banzhaf_shapley
# - msr_banzhaf_shapley_500
# - msr_banzhaf_shapley_5000
- least_core
- loo
repetitions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
experiments:
point_removal:
sampler: default
curves:
accuracy_logistic_regression:
fn: metric
metric: accuracy
eval_model: logistic_regression
plots:
- accuracy
accuracy_knn:
fn: metric
metric: accuracy
eval_model: knn
plots:
- accuracy
accuracy_gradient_boosting_classifier:
fn: metric
metric: accuracy
eval_model: gradient_boosting_classifier
plots:
- accuracy
accuracy_svm:
fn: metric
metric: accuracy
eval_model: svm
plots:
- accuracy
accuracy_mlp:
fn: metric
metric: accuracy
eval_model: mlp
plots:
- accuracy
value_decay:
fn: value_decay
fraction: 1.0
plots:
- value_decay
top_fraction:
fn: top_fraction
alpha_range:
from: 0.01
to: 0.5
step: 0.01
plots:
- rank_stability
metrics:
weighted_relative_accuracy_difference_random:
curve:
- accuracy_logistic_regression
- accuracy_knn
- accuracy_gradient_boosting_classifier
- accuracy_svm
- accuracy_mlp
lamb: 0.1
fn: weighted_relative_accuracy_difference_random
plots:
- table
- box_wrad
geometric_weighted_drop_half:
curve:
- accuracy_logistic_regression
- accuracy_knn
- accuracy_gradient_boosting_classifier
- accuracy_svm
- accuracy_mlp
fn: geometric_weighted_drop
input_perc: 0.5
plots:
- table
- box_wad
geometric_weighted_drop:
curve:
- accuracy_logistic_regression
- accuracy_knn
- accuracy_gradient_boosting_classifier
- accuracy_svm
- accuracy_mlp
fn: geometric_weighted_drop
input_perc: 1.0
plots:
- table
- box_wad
noise_removal:
sampler: default
preprocessors:
flip_labels:
perc: 0.2
curves:
precision_recall:
fn: precision_recall
flipped_labels: preprocessor.flip_labels.idx
plots:
- precision_recall
metrics:
roc_auc:
curve:
- precision_recall
fn: roc_auc
plots:
- table
- box_auc
plots:
accuracy:
type: line
mean_agg: mean
std_agg: bootstrap
plot_perc: 0.5
x_label: "n"
y_label: "Accuracy"
precision_recall:
type: line
mean_agg: mean
std_agg: bootstrap
x_label: "Recall"
y_label: "Precision"
table:
type: table
format: ".3f"
box_wrad:
type: boxplot
x_label: "WRAD"
box_wad:
type: boxplot
x_label: "WAD"
box_auc:
type: boxplot
x_label: "AUC"
rank_stability:
type: line
mean_agg: intersect
x_label: "%"
y_label: "%"
value_decay:
type: line
mean_agg: mean
std_agg: bootstrap
x_label: "n"
y_label: "%"
samplers:
default:
train: 0.1667
val: 0.1667
test: 0.6667
max_samples: 3000
datasets:
diabetes:
openml_id: 37
cpu:
openml_id: 197
preprocessor:
threshold_y:
threshold: 89
click:
openml_id: 1216
covertype:
openml_id: 1596
phoneme:
openml_id: 1489
fmnist_binary:
openml_id: 40996
filters:
binarization:
label_zero: '0'
label_one: '1'
preprocessor:
principal_resnet_components:
n_components: 32
grayscale: true
seed: 101
cifar10:
openml_id: 40927
filters:
binarization:
label_zero: '1'
label_one: '9'
preprocessor:
principal_resnet_components:
n_components: 32
grayscale: false
seed: 102
mnist_binary:
openml_id: 554
filters:
binarization:
label_zero: '1'
label_one: '7'
preprocessor:
principal_resnet_components:
n_components: 32
grayscale: true
seed: 103
mnist_multi:
openml_id: 554
preprocessor:
principal_resnet_components:
n_components: 32
grayscale: true
seed: 104
models:
logistic_regression:
model: logistic_regression
solver: liblinear
gradient_boosting_classifier:
model: gradient_boosting_classifier
n_estimators: 40
min_samples_split: 6
max_depth: 2
knn:
model: knn
n_neighbors: 5
weights: uniform
svm:
model: svm
kernel: rbf
mlp:
model: mlp
valuation_methods:
random:
algorithm: random
loo:
algorithm: loo
progress: true
cache_group: acc
classwise_shapley:
algorithm: classwise_shapley
cache_group: disc_acc
normalize_values: true
n_resample_complement_sets: 1
n_updates: 500
rtol: 1e-4
progress: true
use_default_scorer_value: false
beta_shapley:
algorithm: beta_shapley
alpha: 16.0
beta: 1.0
n_updates: 500
progress: true
cache_group: acc
banzhaf_shapley:
algorithm: banzhaf_shapley
n_updates: 500
progress: true
cache_group: acc
msr_banzhaf_shapley_500:
algorithm: msr_banzhaf_shapley
n_updates: 500
progress: true
cache_group: acc
msr_banzhaf_shapley_5000:
algorithm: msr_banzhaf_shapley
n_updates: 5000
progress: true
cache_group: acc
tmc_shapley:
algorithm: tmc_shapley
rtol: 1e-4
n_updates: 500
progress: true
cache_group: acc
least_core:
algorithm: least_core
n_updates: 5000
progress: false
cache_group: acc