forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnative_int4_pipeline.py
146 lines (115 loc) · 5.59 KB
/
native_int4_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import argparse
from ipex_llm.transformers import *
def convert(repo_id_or_model_path, model_family, tmp_path):
from ipex_llm import llm_convert
original_llm_path = repo_id_or_model_path
bigdl_llm_path = llm_convert(
model=original_llm_path,
outfile='./',
outtype='int4',
tmp_path=tmp_path,
model_family=model_family)
return bigdl_llm_path
def load(model_path, model_family, n_threads):
model_family_to_class = {
"llama": LlamaForCausalLM,
"gptneox": GptneoxForCausalLM,
"bloom": BloomForCausalLM,
"starcoder": StarcoderForCausalLM
}
if model_family in model_family_to_class:
llm_causal = model_family_to_class[model_family]
else:
raise ValueError(f"Unknown model family: {model_family}")
llm = llm_causal.from_pretrained(
pretrained_model_name_or_path=model_path,
native=True,
dtype="int4",
n_threads=n_threads)
return llm
def inference(llm, repo_id_or_model_path, model_family, prompt):
if model_family in ['llama', 'gptneox', 'bloom', 'starcoder']:
# ------ Option 1: Use IPEX-LLM based tokenizer
print('-'*20, ' IPEX-LLM based tokenizer ', '-'*20)
st = time.time()
# please note that the prompt here can either be a string or a list of string
tokens_id = llm.tokenize(prompt)
output_tokens_id = llm.generate(tokens_id, max_new_tokens=32)
output = llm.batch_decode(output_tokens_id)
print(f'Inference time: {time.time()-st} s')
print(f'Output:\n{output}')
# ------- Option 2: Use HuggingFace transformers tokenizer
print('-'*20, ' HuggingFace transformers tokenizer ', '-'*20)
print('Please note that the loading of HuggingFace transformers tokenizer may take some time.\n')
# here is only a workaround for default example model 'decapoda-research/llama-7b-hf' in LLaMA family,
# due to its out-of-date 'tokenizer_class' defined in its tokenizer_config.json.
# for most cases, you could use `AutoTokenizer`.
if model_family == 'llama':
from transformers import LlamaTokenizer
tokenizer = LlamaTokenizer.from_pretrained(repo_id_or_model_path)
else:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(repo_id_or_model_path)
st = time.time()
# please note that the prompt here can either be a string or a list of string
tokens_id = tokenizer(prompt).input_ids
output_tokens_id = llm.generate(tokens_id, max_new_tokens=32)
output = tokenizer.batch_decode(output_tokens_id)
print(f'Inference time: {time.time()-st} s')
print(f'Output:\n{output}')
# Option 3: fast forward
print('-'*20, ' fast forward ', '-'*20)
st = time.time()
output = llm(prompt, # please note that the prompt here can ONLY be a string
max_tokens=32)
print(f'Inference time (fast forward): {time.time()-st} s')
print(f'Output:\n{output}')
def main():
parser = argparse.ArgumentParser(description='INT4 pipeline example')
parser.add_argument('--thread-num', type=int, default=2, required=True,
help='Number of threads to use for inference')
parser.add_argument('--model-family', type=str, default='llama', required=True,
choices=["llama", "llama2", "bloom", "gptneox", "starcoder"],
help="The model family of the large language model (supported option: 'llama', 'llama2', "
"'gptneox', 'bloom', 'starcoder')")
parser.add_argument('--repo-id-or-model-path', type=str, required=True,
help='The path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default='Once upon a time, there existed a little girl who liked to have adventures. ',
help='Prompt to infer')
parser.add_argument('--tmp-path', type=str, default='/tmp',
help='path to store intermediate model during the conversion process')
args = parser.parse_args()
repo_id_or_model_path = args.repo_id_or_model_path
# Currently, we can directly use llama related implementation to run llama2 models
if args.model_family == 'llama2':
args.model_family = 'llama'
# Step 1: convert original model to IPEX-LLM model
ipex_llm_path = convert(repo_id_or_model_path=repo_id_or_model_path,
model_family=args.model_family,
tmp_path=args.tmp_path)
# Step 2: load int4 model
llm = load(model_path=ipex_llm_path,
model_family=args.model_family,
n_threads=args.thread_num)
# Step 3: inference
inference(llm=llm,
repo_id_or_model_path=repo_id_or_model_path,
model_family=args.model_family,
prompt=args.prompt)
if __name__ == '__main__':
main()