-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathctaLSTM_V4.py
838 lines (711 loc) · 33.8 KB
/
ctaLSTM_V4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
# encoding: UTF-8
"""
基于LSTM预测的交易策略实现
"""
import pandas as pd
from pandas import Series, DataFrame
from sklearn import preprocessing
import numpy as np
import tensorflow as tf
from tensorflow.python.ops import rnn, rnn_cell
import csv
import psutil
import os
from ctaBase import *
from ctaTemplate import CtaTemplate
import tarfile
########################################################################
class ctaLSTM_V4(CtaTemplate):
className = 'ctaLSTM_V4'
author = u'Feng Zipeng'
# 策略参数
# buy_raise_score = 4.7 # 预测得分超过该值,建多仓
# sell_down_score = 3.3
# buy_down_score = 3.2
# sell_raise_score = 4.6
# zhisun = 0.0015 # 止损阈值
# zhiying = 0.0012 # 止盈阈值
# seq_len = 25 # 用于预测的时间序列长度
n_input = 34 # 特征数量
n_steps = 25 # 时间序列长度
n_hidden = 500 # 隐藏层神经元个数
n_classes = 7 # 分类数量
# 策略变量
count = 0 # 用来记录接收bar数据的个数
count_bar = 0 # 用来记录bar推送给onbar数据的个数
bar = None
barMinute = EMPTY_STRING
date = None
# score = 0
predict_1 = 0 # 预测每分钟分类
predict_2 = 0
predict_3 = 0
predict_4 = 0
predict_5 = 0
real_raisedown = 0 # 当前分钟真实涨跌幅
real_class = 0 # 当前分钟真实分类
acc_1 = 0 # 准确率
acc_2 = 0
acc_3 = 0
acc_4 = 0
acc_5 = 0
raise_count = 0
down_count = 0
rec_price = 0 # 参考价
init_price = 0
pos_rec = 0 # 参考持仓量
position = 0
last_minutevolume = 0 # 保存上一分钟最后一个TICK的成交量
latest_minutevolume = 0 # 用来保存当前这一分钟最后一个tick的成交量
DATAS = [] # 保存bar数据
trade_records = [] # 保存交易数据
datas = [] # 保存实时价格
predict_1min = []
predict_2min = []
predict_3min = []
predict_4min = []
predict_5min = []
real_1min = []
predict_records = [] # 保存预测分类
real_records = [] # 保存实际分类
zhisun_label = False
zhisun_bar = 0
count_correct_1 = 0
count_correct_2 = 0
count_correct_3 = 0
count_correct_4 = 0
count_correct_5 = 0
MA_5 = EMPTY_FLOAT
MA_12 = EMPTY_FLOAT
MA_26 = EMPTY_FLOAT
Dis_MA5_26 = EMPTY_FLOAT
EMA_5 = EMPTY_FLOAT
EMA_12 = EMPTY_FLOAT
EMA_26 = EMPTY_FLOAT
Dis_EMA5_26 = EMPTY_FLOAT
Vol_MA_5 = EMPTY_FLOAT
Vol_MA_12 = EMPTY_FLOAT
Vol_MA_26 = EMPTY_FLOAT
Dis_Vol_MA5_26 = EMPTY_FLOAT
Vol_EMA_5 = EMPTY_FLOAT
Vol_EMA_12 = EMPTY_FLOAT
Vol_EMA_26 = EMPTY_FLOAT
Dis_Vol_EMA5_26 = EMPTY_FLOAT
DIFF_12_26 = EMPTY_FLOAT
DEA_12_26 = EMPTY_FLOAT
MACD = EMPTY_FLOAT
boll_up = EMPTY_FLOAT
boll_down = EMPTY_FLOAT
b_index = EMPTY_FLOAT
channel_width = EMPTY_FLOAT
# mean = EMPTY_FLOAT
# 参数列表,保存了参数的名称
paramList = ['name',
'className',
'author',
'vtSymbol']
# 变量列表,保存了变量的名称
varList = ['inited',
'trading',
'pos',
'pos_rec',
'count',
'count_bar',
'predict_1',
'predict_2',
'predict_3',
'predict_4',
'predict_5',
'acc_1',
'acc_2',
'acc_3',
'acc_4',
'acc_5']
# ----------------------------------------------------------------------
def __init__(self, ctaEngine, setting, filepath=None):
"""Constructor"""
super(ctaLSTM_V4, self).__init__(ctaEngine, setting)
self.DATAS = []
self.predict_records = []
self.real_records = []
self.trade_records = []
self.datas = []
self.lastOrder = None
self.filepath = filepath
# # Open tarfile
# tar = tarfile.open(mode="r:gz", fileobj=file(self.filepath))
# for member in tar.getnames():
# print tar.extractfile(member).read()
# tar = tarfile.open(self.filepath)
# tar.extractall()
# tar.close()
self.writeCtaLog(u'内存占用情况:' + str(self.vi_mem_record()))
# 注意策略类中的可变对象属性(通常是list和dict等),在策略初始化时需要重新创建,
# 否则会出现多个策略实例之间数据共享的情况,有可能导致潜在的策略逻辑错误风险,
# 策略类中的这些可变对象属性可以选择不写,全都放在__init__下面,写主要是为了阅读
# 策略时方便(更多是个编程习惯的选择)
# ----------------------------------------------------------------------
def onInit(self):
"""初始化策略(必须由用户继承实现)"""
self.writeCtaLog(u'LSTM策略初始化')
# initData = self.loadBar(self.initDays)
# for bar in initData:
# self.onBar(bar)
self.putEvent()
# ----------------------------------------------------------------------
def onStart(self):
"""启动策略(必须由用户继承实现)"""
self.writeCtaLog(u'LSTM策略启动')
self.putEvent()
# ----------------------------------------------------------------------
def onStop(self):
"""停止策略(必须由用户继承实现)"""
self.writeCtaLog(u'LSTM策略停止')
# if self.pos < 0 and self.pos_rec < 0:
# self.cover(self.askprice1, 1)
# self.pos_rec += 1
# self.writeCtaLog(u'cover_Price' + str(self.askprice1))
# # self.trade_records.append([bar.datetime, self.price, u'cover'])
# if self.pos > 0 and self.pos_rec > 0:
# self.sell(self.bidprice1, 1)
# self.pos_rec -= 1
# self.writeCtaLog(u'sell_Price' + str(self.bidprice1))
# # self.zhisun_label = True
# self.zhisun_bar = 0
# self.trade_records.append([bar.datetime, self.price, u'sell'])
self.putEvent()
# ----------------------------------------------------------------------
def onTick(self, tick):
"""收到行情TICK推送(必须由用户继承实现)"""
tickMinute = tick.datetime.minute
self.price = tick.lastPrice # 记录每个TICK的最新价
self.bidprice1 = tick.bidPrice1
self.askprice1 = tick.askPrice1
if tickMinute != self.barMinute:
if self.bar:
self.bar.mean = (self.bar.low + self.bar.close /
+ self.bar.high) / 3.0
self.bar.Stockup = self.bar.openInterest - self.position
self.position = self.bar.openInterest
# 保存上一分钟的最后一个TICK的持仓量,方便插入下一分钟数据时计算
self.bar.volume = self.latest_minutevolume \
- self.last_minutevolume
self.last_minutevolume = self.latest_minutevolume
# 将上一分钟的数据推送给onBar
self.count_bar += 1 # 推送给onbar的次数+1
# # 在每次tick.minute更新时将上一分钟的bar数据推送给onbar
self.onBar(self.bar)
bar = CtaBarData()
bar.open = tick.lastPrice
bar.high = tick.lastPrice
bar.low = tick.lastPrice
bar.close = tick.lastPrice
bar.askPrice1 = tick.askPrice1
bar.bidPrice1 = tick.bidPrice1
bar.askvo1 = tick.askVolume1
bar.bidvo1 = tick.bidVolume1
bar.date = tick.date
bar.time = tick.time
bar.datetime = tick.datetime # K线的时间设为第一个Tick的时间
bar.openInterest = tick.openInterest # 持仓量,是每一个tick的开始持仓量
self.latest_minutevolume = tick.volume
self.date = bar.date
self.bar = bar # 这种写法为了减少一层访问,加快速度
self.barMinute = tickMinute # 更新当前的分钟
else: # 否则继续累加新的K线
bar = self.bar # 写法同样为了加快速度
bar.high = max(bar.high, tick.lastPrice)
bar.low = min(bar.low, tick.lastPrice)
bar.close = tick.lastPrice
bar.askPrice1 = tick.askPrice1
bar.bidPrice1 = tick.bidPrice1
bar.askvo1 = tick.askVolume1
bar.bidvo1 = tick.bidVolume1
# 实时记录当前这一分钟最后一个tick的成交量
self.latest_minutevolume = tick.volume
bar.openInterest = tick.openInterest
# 建多仓的平仓策略
# if self.pos > 0 and self.pos_rec > 0:
# self.long_pos_sell(tick)
# # 建空仓的平仓策略
# if self.pos < 0 and self.pos_rec < 0:
# self.short_pos_cover(tick)
self.putEvent()
# ---------------------------------------------------------------------
def onBar(self, bar):
"""收到Bar推送(必须由用户继承实现)"""
# start = time.clock()
new_data = {'close': bar.close, 'max': bar.high, 'min': bar.low,
'mean': bar.mean, 'pos': bar.Stockup, 'vol': bar.volume,
'open': bar.open, 'askpr1': bar.askPrice1,
'askvo1': bar.askvo1,
'bidpr1': bar.bidPrice1, 'bidvo1': bar.bidvo1}
# 对买一价和卖一价保持和tick中同样的名称,方便后续调用进行建仓/平仓
self.DATAS.append(new_data)
self.datas.append([bar.datetime, self.price])
self.count += 1
# 接收到bar推送,记录实际涨跌分类
self.writeCtaLog(u"onbar接收到bar推送数据,时间为:" +
str(bar.datetime) + u',' + str(self.count) + u'分钟')
self.writeCtaLog(u'内存占用情况:' + str(self.vi_mem_record()))
self.real_raisedown = (self.bar.close - self.bar.open) / self.bar.open
if self.real_raisedown > 0.0006:
self.real_class = 7
elif self.real_raisedown > 0.00035:
self.real_class = 6
elif self.real_raisedown > 0.0002:
self.real_class = 5
elif self.real_raisedown > -0.0002:
self.real_class = 4
elif self.real_raisedown > -0.00035:
self.real_class = 3
elif self.real_raisedown > -0.0006:
self.real_class = 2
else:
self.real_class = 1
# 14:58后停止交易,强制平仓,不留过夜仓
if bar.datetime.hour == 14 and bar.datetime.minute >= 58:
# print(u'stop time')
if self.pos == 0:
pass
if self.pos > 0:
self.sell(self.bidprice1, 1)
self.zhisun_label = True
self.trade_records.append([bar.datetime, self.price, u'sell'])
if self.pos < 0:
self.cover(self.askprice1, 1)
self.zhisun_label = True
self.trade_records.append([bar.datetime, self.price, u'cover'])
# 如果是第一次推送,则不接受该数据,因为第一条数据的增仓量是不对的
if self.count_bar == 1:
self.writeCtaLog(u"onbar第一次接受数据,数据不准确,不接收.")
# 前26分钟的数据只接收,不作判定
if self.count >= 26:
datafr = pd.DataFrame(self.DATAS)
# 获得添加特征并整理后的时间序列数据
seq_data = self.data_use(datafr)
# 获得1-5分钟涨跌情况预测类别
self.predict_1, self.predict_2, self.predict_3,\
self.predict_4, self.predict_5 = self.pred(seq_data)
# 记录实际涨跌分类和预测涨跌分类
self.predict_1min.append(self.predict_1)
self.predict_2min.append(self.predict_2)
self.predict_3min.append(self.predict_3)
self.predict_4min.append(self.predict_4)
self.predict_5min.append(self.predict_5)
self.real_1min.append(self.real_class)
# print predict_records
# print real_records
self.predict_records.append([bar.datetime, self.predict_1, self.predict_2, self.predict_3, self.predict_4, self.predict_5])
self.real_records.append([bar.datetime, self.real_class])
# 计算1-5分钟的预测准确率
count_f = float(self.count)
if len(self.predict_1min) >= 2:
if self.predict_1min[-2:-1] == self.real_1min[-1:]:
self.count_correct_1 += 1
count_correct_f1 = float(self.count_correct_1)
self.acc_1 = count_correct_f1 / (count_f - 25.0)
if len(self.predict_2min) >= 3:
if self.predict_2min[-3:-2] == self.real_1min[-1:]:
self.count_correct_2 += 1
count_correct_f2 = float(self.count_correct_2)
self.acc_2 = count_correct_f2 / (count_f - 25.0)
if len(self.predict_3min) >= 4:
if self.predict_3min[-4:-3] == self.real_1min[-1:]:
self.count_correct_3 += 1
count_correct_f3 = float(self.count_correct_3)
self.acc_3 = count_correct_f3 / (count_f - 25.0)
if len(self.predict_4min) >= 5:
if self.predict_4min[-5:-4] == self.real_1min[-1:]:
self.count_correct_4 += 1
count_correct_f4 = float(self.count_correct_4)
self.acc_4 = count_correct_f4 / (count_f - 25.0)
if len(self.predict_5min) >= 6:
if self.predict_5min[-6:-5] == self.real_1min[-1:]:
self.count_correct_5 += 1
count_correct_f5 = float(self.count_correct_5)
self.acc_5 = count_correct_f5 / (count_f - 25.0)
# self.writeCtaLog(u"acc:" + str(self.acc_1, self.acc_2, self.acc_3, self.acc_4, self.acc_5))
# 计算加权得分
# self.score = 0.3 * self.predict_1 + 0.2 * self.predict_2 + \
# 0.2 * self.predict_3 + 0.2 * self.predict_4 + \
# 0.1 * self.predict_5
self.raise_count = 0
self.down_count = 0
if self.predict_1 >= 5:
self.raise_count += 1
elif self.predict_1 <= 3:
self.down_count += 1
if self.predict_2 >= 5:
self.raise_count += 1
elif self.predict_2 <= 3:
self.down_count += 1
if self.predict_3 >= 5:
self.raise_count += 1
elif self.predict_3 <= 3:
self.down_count += 1
if self.predict_4 >= 5:
self.raise_count += 1
elif self.predict_4 <= 3:
self.down_count += 1
if self.predict_5 >= 5:
self.raise_count += 1
elif self.predict_5 <= 3:
self.down_count += 1
self.pos_rec_concert()
# 考虑到发出建仓/平仓信号但是没有成功交易的情况,强制更新pos_rec与pos一致
if self.pos == 0:
self.zhisun_set()
# 当前持仓为0,如果上一笔交易是止损平仓,则考虑停止5分钟再进行建仓判断
# 得分大于买多阈值时,建多仓
if self.raise_count >= 2 and self.down_count <= 1 and self.zhisun_label == False:
self.buy(self.askprice1, 1)
self.rec_price = self.askprice1 # 记录当前的价格作为比较价格
self.pos_rec += 1
self.writeCtaLog(u'buy!' + str(self.rec_price) + u'pos_rec' + str(self.pos_rec))
self.trade_records.append([bar.datetime, self.price, u'buy'])
self.init_price = self.askprice1
# 得分小于买空阈值时,建空仓
if self.raise_count <= 1 and self.down_count >= 2 and self.zhisun_label == False:
self.short(self.bidprice1, 1)
self.rec_price = self.bidprice1
self.init_price = self.bidprice1
self.pos_rec -= 1
self.writeCtaLog(u'short!' + str(self.rec_price) + u'pos_rec' + str(self.pos_rec))
self.trade_records.append([bar.datetime, self.price, u'short'])
# 平多仓
if self.pos > 0 and self.pos_rec > 0:
self.long_pos_sell(bar)
# 平空仓
if self.pos < 0 and self.pos_rec < 0:
self.short_pos_cover(bar)
# 保存当天数据和交易记录
path = "/home/chocolate/LSTM-source/daily_datas/"
self.saveFile = file(path + str(self.date) + 'datas.csv', 'wb')
self.writer = csv.writer(self.saveFile)
self.writer.writerows(self.datas)
self.saveFile.close()
self.saveFile = file(path + str(self.date) + 'records.csv', 'wb')
self.writer = csv.writer(self.saveFile)
self.writer.writerows(self.trade_records)
self.saveFile.close()
self.saveFile = file(path + str(self.date) + 'predict_class.csv', 'wb')
self.writer = csv.writer(self.saveFile)
self.writer.writerows(self.predict_records)
self.saveFile.close()
self.saveFile = file(path + str(self.date) + 'real_class.csv', 'wb')
self.writer = csv.writer(self.saveFile)
self.writer.writerows(self.real_records)
self.saveFile.close()
# 发出状态更新事件
self.putEvent()
def RNN(self, x, weights, biases):
x = tf.transpose(x, [1, 0, 2])
x = tf.reshape(x, [-1, self.n_input])
x = tf.split(0, self.n_steps, x)
lstm_cell = rnn_cell.BasicLSTMCell(self.n_hidden, forget_bias=1.0)
outputs, states = rnn.rnn(lstm_cell, x, dtype=tf.float32)
return tf.matmul(outputs[-1], weights['out']) + biases['out']
def pred(self, seq_data):
tf.reset_default_graph() # 重置流图
xtr = tf.placeholder("float", [None, self.n_steps, self.n_input])
# ytr = tf.placeholder("float", [None, n_classes])
weights = {
'out': tf.Variable(tf.random_normal([self.n_hidden,
self.n_classes]))
}
biases = {
'out': tf.Variable(tf.random_normal([self.n_classes]))
}
# 获取预测值
pred = self.RNN(xtr, weights, biases)
saver1 = tf.train.Saver()
saver2 = tf.train.Saver()
saver3 = tf.train.Saver()
saver4 = tf.train.Saver()
saver5 = tf.train.Saver()
path = "/home/chocolate/LSTM-source/models/models_1/"
# 创建会话,加载模型
with tf.Session() as sess_1:
# sess_1 = tf.InteractiveSession()
saver1.restore(sess_1, path + "predict_1min.ckpt")
# 将当前数据代入模型,获得1-5分钟的分类类别
# 7: 4:小涨 3:平稳 2:小跌 1:大跌
pred_1 = sess_1.run(pred, feed_dict={xtr: seq_data})
with tf.Session() as sess_2:
# sess_1 = tf.InteractiveSession()
saver2.restore(sess_2, path + "predict_2min.ckpt")
# 将当前数据代入模型,获得1-5分钟的分类类别
# 7: 4:小涨 3:平稳 2:小跌 1:大跌
pred_2 = sess_2.run(pred, feed_dict={xtr: seq_data})
with tf.Session() as sess_3:
# sess_1 = tf.InteractiveSession()
saver3.restore(sess_3, path + "predict_3min.ckpt")
# 将当前数据代入模型,获得1-5分钟的分类类别
# 7: 4:小涨 3:平稳 2:小跌 1:大跌
pred_3 = sess_3.run(pred, feed_dict={xtr: seq_data})
with tf.Session() as sess_4:
# sess_1 = tf.InteractiveSession()
saver4.restore(sess_4, path + "predict_4min.ckpt")
# 将当前数据代入模型,获得1-5分钟的分类类别
# 7: 4:小涨 3:平稳 2:小跌 1:大跌
pred_4 = sess_4.run(pred, feed_dict={xtr: seq_data})
# 将当前数据代入模型,获得1-5分钟的分类类别
with tf.Session() as sess_5:
# sess_1 = tf.InteractiveSession()
saver5.restore(sess_5, path + "predict_5min.ckpt")
# 将当前数据代入模型,获得1-5分钟的分类类别
# 7: 4:小涨 3:平稳 2:小跌 1:大跌
pred_5 = sess_5.run(pred, feed_dict={xtr: seq_data})
# pred_1 = sess_1.run(pred, feed_dict={xtr: seq_data})
predict_1 = 7 - pred_1.argmax()
# pred_2 = sess_2.run(pred, feed_dict={xtr: seq_data})
predict_2 = 7 - pred_2.argmax()
# pred_3 = sess_3.run(pred, feed_dict={xtr: seq_data})
predict_3 = 7 - pred_3.argmax()
# pred_4 = sess_4.run(pred, feed_dict={xtr: seq_data})
predict_4 = 7 - pred_4.argmax()
# pred_5 = sess_5.run(pred, feed_dict={xtr: seq_data})
predict_5 = 7 - pred_5.argmax()
return predict_1, predict_2, predict_3, predict_4, predict_5
def data_use(self, datafr): # 根据分钟数据进行矩阵计算
datafr['MA_5'] = pd.rolling_mean(datafr['close'], 5)
datafr['MA_12'] = pd.rolling_mean(datafr['close'], 12)
datafr['MA_26'] = pd.rolling_mean(datafr['close'], 26)
# 计算移动平均线之间的距离
datafr['Dis_MA5_26'] = datafr['MA_5'] - datafr['MA_26']
# 计算指数平滑移动平均线
datafr['EMA_5'] = pd.ewma(datafr['close'], span=5)
datafr['EMA_12'] = pd.ewma(datafr['close'], span=12)
datafr['EMA_26'] = pd.ewma(datafr['close'], span=26)
# 计算指数平滑移动平均线之间的距离
datafr['Dis_EMA5_26'] = datafr['EMA_5'] - datafr['EMA_26']
# 添加成交量的移动平均线MA
datafr['Vol_MA_5'] = pd.rolling_mean(datafr['vol'], 5)
datafr['Vol_MA_12'] = pd.rolling_mean(datafr['vol'], 12)
datafr['Vol_MA_26'] = pd.rolling_mean(datafr['vol'], 26)
# 计算成交量移动平均线之间的距离
datafr['Dis_Vol_MA5_26'] = datafr['Vol_MA_5'] - datafr['Vol_MA_26']
# 添加成交量的指数平滑移动平均线
datafr['Vol_EMA_5'] = pd.ewma(datafr['vol'], span=5)
datafr['Vol_EMA_12'] = pd.ewma(datafr['vol'], span=12)
datafr['Vol_EMA_26'] = pd.ewma(datafr['vol'], span=26)
# 计算指数平滑移动平均线之间的距离
datafr['Dis_Vol_EMA5_26'] = datafr['Vol_EMA_5'] - datafr['Vol_EMA_26']
# EMA_12是快速指数移动平均线,EMA_26是慢速指数移动平均线
# 计算DIFF
datafr['DIFF_12_26'] = datafr['EMA_12'] - datafr['EMA_26']
# 计算离差平均值DEA,也就是计算离差值的指数平滑移动平均,设置为5分钟的指数平滑曲线
datafr['DEA_12_26'] = pd.ewma(datafr['DIFF_12_26'], span=9)
# 计算MACD值
datafr['MACD'] = 2 * (datafr['DIFF_12_26'] - datafr['DEA_12_26'])
datafr = datafr.fillna(0)
MD = []
std_sum = 0
for j in range(len(datafr)):
if j < 12:
MD.append(0)
else:
for k in range(12):
std_sum += (datafr['close'].iloc[j - k] -
datafr['MA_12'].iloc[j - k]) ** 2
std_sum = np.sqrt(std_sum / 12.0)
MD.append(std_sum)
std_sum = 0
# 计算上轨线
datafr['boll_up'] = datafr['MA_12'] + 2 * Series(MD)
# 计算下轨线
datafr['boll_down'] = datafr['MA_12'] - 2 * Series(MD)
# 计算%b指标
datafr['b_index'] = (datafr['close'] - datafr['boll_down']
) / (datafr['boll_up'] - datafr['boll_down'])
# 计算通道宽度
datafr['channel_width'] = (
datafr['boll_up'] - datafr['boll_down']) / datafr['close']
# test_data = datafr[-1:]
test_data = DataFrame(datafr,
columns=['close', 'max', 'min', 'pos',
'vol', 'open', 'askpr1', 'askvo1',
'bidpr1', 'bidvo1', 'MA_5', 'MA_12',
'MA_26', 'Dis_MA5_26', 'EMA_5',
'EMA_12', 'EMA_26', 'Dis_EMA5_26',
'Vol_MA_5', 'Vol_MA_12', 'Vol_MA_26',
'Dis_Vol_MA5_26', 'Vol_EMA_5',
'Vol_EMA_12', 'Vol_EMA_26',
'Dis_Vol_EMA5_26', 'DIFF_12_26',
'DEA_12_26', 'MACD', 'boll_up',
'boll_down', 'b_index',
'channel_width', 'mean'])
# 取当前时刻往前n个单位长度的数据
# test_data = test_data.fillna(0)
test_new_data = test_data[-25:]
# test_new_data = test_new_data.fillna(0)
where_are_nan = np.isnan(test_new_data)
where_are_inf = np.isinf(test_new_data)
test_new_data[where_are_nan] = 0
test_new_data[where_are_inf] = 0
# 将数据变为数组形式并标准化
data_new_array = np.array(test_new_data)
min_max_scaler = preprocessing.MinMaxScaler()
data_new_array = min_max_scaler.fit_transform(data_new_array)
# 生成n分钟序列
seq_data = [data_new_array]
seq_data = np.array(seq_data)
return seq_data
def pos_rec_concert(self): # pos与pos_rec不一致时进行调整。
if self.pos != self.pos_rec:
self.writeCtaLog(u'调整pos_rec,由' +
str(self.pos_rec) + u'变为' + str(self.pos))
self.pos_rec = self.pos
if self.lastOrder is not None and self.lastOrder.status == u'未成交':
self.cancelOrder(self.lastOrder.vtOrderID)
self.lastOrder = None
self.writeCtaLog(u'撤销上一单')
def long_pos_sell(self, long_pos): # 多仓的平仓考虑。
if self.raise_count <= 1 and self.down_count >= 2:
self.sell(self.bidprice1, 1)
self.pos_rec -= 1
self.writeCtaLog(u'sell_Price' + str(long_pos.bidPrice1))
# self.zhisun_label = True
# self.zhisun_bar = 0
self.trade_records.append([long_pos.datetime, self.price, u'sell'])
# if long_pos.bidPrice1 < (1 - self.zhisun)*self.rec_price:#止损策略
# self.sell(self.bidprice1, 1)
# self.pos_rec -= 1
# self.writeCtaLog(u'多仓'+u'止损价'+str((1 - self.zhisun) * self.rec_price)+u'当前价'+str(long_pos.bidPrice1))
# self.zhisun_label = True
# self.zhisun_bar = 0
# self.trade_records.append([long_pos.datetime,self.price,u'sell'])
# if long_pos.bidPrice1 > self.rec_price*(1+self.zhiying):##止盈策略
# self.sell(self.bidprice1, 1)
# self.pos_rec -= 1
# self.writeCtaLog(u'多仓'+u'止盈价'+str(self.rec_price*(1+self.zhiying))+u'当前价'+str(long_pos.bidPrice1))
# self.trade_records.append([long_pos.datetime,self.price,u'sell'])
def short_pos_cover(self, short_pos): # 持有空仓时的平仓考虑。
if self.raise_count >= 2 and self.down_count <= 1:
self.cover(self.askprice1, 1)
self.pos_rec += 1
self.writeCtaLog(u'cover_Price' + str(short_pos.askPrice1))
self.trade_records.append([short_pos.datetime, self.price, u'cover'])
# if short_pos.askPrice1 > (1+self.zhisun)*self.rec_price: ##做空的时候,实时价格高于止损线
# self.cover(self.askprice1, 1)
# self.pos_rec += 1
# self.writeCtaLog(u'空仓'+u'止损价'+str((1 + self.zhisun) * self.rec_price)+u'当前价'+str(short_pos.askPrice1))
# self.zhisun_label = True
# self.zhisun_bar = 0
# self.trade_records.append([short_pos.datetime,self.price,u'cover'])
# if short_pos.askPrice1 < self.rec_price*(1-self.zhiying):#做空的时候,实时价格已经低于止盈线了
# self.cover(self.askprice1, 1)
# self.pos_rec += 1
# self.writeCtaLog(u'空仓'+u'止盈价'+str(self.rec_price * (1 - self.zhiying))+u'当前价'+str(short_pos.askPrice1))
# self.trade_records.append([short_pos.datetime,self.price,u'cover'])
# def zhisun_ying_rate_update(self, own_pos):
# self.rec_price = float(self.rec_price + own_pos.askPrice1)/2
# if self.zhisun > 0:
# self.zhisun = self.zhisun + 0.0000008
# if self.zhiying > 0:
# self.zhiying = self.zhiying + 0.0000008#tick中和bar中更新止盈止损一致
# 每次止损平仓后,考虑停止5分钟进行操作。
# 因此设置zhisun_label作为是否能重新建仓的标志,以zhisun_bar作为停止的分钟时长的计数。
def zhisun_set(self):
if self.zhisun_label == True:
self.zhisun_bar += 1
if self.zhisun_bar >= 5:
self.zhisun_bar = 0
self.zhisun_label = False
def vi_mem_record(self):
'''
用来对内存占用情况进行记录,输出
'''
mem_info = psutil.virtual_memory()
return (psutil.Process(os.getpid()).memory_info().vms, psutil.Process(os.getpid()).memory_info().rss, mem_info.total, mem_info.percent) #vms虚拟内存
# ----------------------------------------------------------------------
def onOrder(self, order):
"""收到委托变化推送(必须由用户继承实现)"""
# 对于无需做细粒度委托控制的策略,可以忽略onOrder
pass
# ----------------------------------------------------------------------
def onTrade(self, trade):
"""收到成交推送(必须由用户继承实现)"""
# 对于无需做细粒度委托控制的策略,可以忽略onOrder
pass
##########################################################################
class OrderManagementDemo(CtaTemplate):
"""基于tick级别细粒度撤单追单测试demo"""
className = 'OrderManagementDemo'
author = u'用Python的交易员'
# 策略参数
initDays = 10 # 初始化数据所用的天数
# 策略变量
bar = None
barMinute = EMPTY_STRING
# 参数列表,保存了参数的名称
paramList = ['name',
'className',
'author',
'vtSymbol']
# 变量列表,保存了变量的名称
varList = ['inited',
'trading',
'pos']
# ----------------------------------------------------------------------
def __init__(self, ctaEngine, setting):
"""Constructor"""
super(OrderManagementDemo, self).__init__(ctaEngine, setting)
self.lastOrder = None
self.orderType = ''
# ----------------------------------------------------------------------
def onInit(self):
"""初始化策略(必须由用户继承实现)"""
self.writeCtaLog(u'双EMA演示策略初始化')
initData = self.loadBar(self.initDays)
for bar in initData:
self.onBar(bar)
self.putEvent()
# ----------------------------------------------------------------------
def onStart(self):
"""启动策略(必须由用户继承实现)"""
self.writeCtaLog(u'双EMA演示策略启动')
self.putEvent()
# ----------------------------------------------------------------------
def onStop(self):
"""停止策略(必须由用户继承实现)"""
self.writeCtaLog(u'双EMA演示策略停止')
self.putEvent()
# ----------------------------------------------------------------------
def onTick(self, tick):
"""收到行情TICK推送(必须由用户继承实现)"""
# 建立不成交买单测试单
if self.lastOrder == None:
self.buy(tick.lastprice - 10.0, 1)
# CTA委托类型映射
if self.lastOrder != None and self.lastOrder.direction == u'多' and self.lastOrder.offset == u'开仓':
self.orderType = u'买开'
elif self.lastOrder != None and self.lastOrder.direction == u'多' and self.lastOrder.offset == u'平仓':
self.orderType = u'买平'
elif self.lastOrder != None and self.lastOrder.direction == u'空' and self.lastOrder.offset == u'开仓':
self.orderType = u'卖开'
elif self.lastOrder != None and self.lastOrder.direction == u'空' and self.lastOrder.offset == u'平仓':
self.orderType = u'卖平'
# 不成交,即撤单,并追单
if self.lastOrder != None and self.lastOrder.status == u'未成交':
self.cancelOrder(self.lastOrder.vtOrderID)
self.lastOrder = None
elif self.lastOrder != None and self.lastOrder.status == u'已撤销':
# 追单并设置为不能成交
self.sendOrder(self.orderType, self.tick.lastprice - 10, 1)
self.lastOrder = None
# ----------------------------------------------------------------------
def onBar(self, bar):
"""收到Bar推送(必须由用户继承实现)"""
pass
# ----------------------------------------------------------------------
def onOrder(self, order):
"""收到委托变化推送(必须由用户继承实现)"""
# 对于无需做细粒度委托控制的策略,可以忽略onOrder
self.lastOrder = order
# ----------------------------------------------------------------------
def onTrade(self, trade):
"""收到成交推送(必须由用户继承实现)"""
# 对于无需做细粒度委托控制的策略,可以忽略onOrder
pass