forked from mzjb/DeepH-pack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
55 lines (49 loc) · 1.52 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os.path
import codecs
from setuptools import setup, find_packages
def read(rel_path):
here = os.path.abspath(os.path.dirname(__file__))
with codecs.open(os.path.join(here, rel_path), 'r') as fp:
return fp.read()
def get_version(rel_path):
for line in read(rel_path).splitlines():
if line.startswith('__version__'):
delim = '"' if '"' in line else "'"
return line.split(delim)[1]
else:
raise RuntimeError("Unable to find version string.")
setup(
name="deeph",
version=get_version("deeph/__init__.py"),
description="DeepH-pack is the official implementation of the Deep Hamiltonian (DeepH) method.",
download_url="https://github.com/mzjb/DeepH-pack",
author="He Li",
python_requires=">=3.9",
packages=find_packages(),
package_dir={'deeph': 'deeph'},
package_data={'': ['*.jl', '*.ini', 'periodic_table.json']},
entry_points={
"console_scripts": [
"deeph-preprocess = deeph.scripts.preprocess:main",
"deeph-train = deeph.scripts.train:main",
"deeph-evaluate = deeph.scripts.evaluate:main",
"deeph-inference = deeph.scripts.inference:main",
]
},
install_requires=[
"numpy",
"scipy",
"torch>=1.9",
"torch_geometric>=1.7.2",
"e3nn>=0.3.5, <=0.4.4",
"h5py",
"pymatgen",
"pathos",
"psutil",
"tqdm",
"tensorboard",
],
license="MIT",
license_files="LICENSE",
zip_safe=False,
)