-
Notifications
You must be signed in to change notification settings - Fork 0
/
net.py
139 lines (115 loc) · 4.92 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from config import *
class Bottleneck(nn.Module):
def __init__(self, nChannels, growthRate):
super(Bottleneck, self).__init__()
interChannels = 4*growthRate
self.bn1 = nn.BatchNorm2d(nChannels)
self.conv1 = nn.Conv2d(nChannels, interChannels, kernel_size=1,
bias=False)
self.bn2 = nn.BatchNorm2d(interChannels)
self.conv2 = nn.Conv2d(interChannels, growthRate, kernel_size=3,
padding=1, bias=False)
def forward(self, x):
out = self.conv1(F.relu(self.bn1(x)))
out = self.conv2(F.relu(self.bn2(out)))
out = torch.cat((x, out), 1)
return out
class SingleLayer(nn.Module):
def __init__(self, nChannels, growthRate):
super(SingleLayer, self).__init__()
self.bn1 = nn.BatchNorm2d(nChannels)
self.conv1 = nn.Conv2d(nChannels, growthRate, kernel_size=3,
padding=1, bias=False)
def forward(self, x):
out = self.conv1(F.relu(self.bn1(x)))
out = torch.cat((x, out), 1)
return out
class Transition(nn.Module):
def __init__(self, nChannels, nOutChannels):
super(Transition, self).__init__()
self.bn1 = nn.BatchNorm2d(nChannels)
self.conv1 = nn.Conv2d(nChannels, nOutChannels, kernel_size=1,
bias=False)
def forward(self, x):
out = self.conv1(F.relu(self.bn1(x)))
out = F.avg_pool2d(out, 2)
return out
class DenseNet(nn.Module):
def __init__(self, growthRate=12, depth=100, reduction=0.5,bottleneck=True, nClasses=(CLASS_NUM+1)*4):
super(DenseNet, self).__init__()
nDenseBlocks = (depth-4) // 3
if bottleneck:
nDenseBlocks //= 2
nChannels = 2*growthRate
self.conv1 = nn.Conv2d(3, nChannels, kernel_size=7, padding=1, stride=2,
bias=False)
self.dense1 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck)
nChannels += nDenseBlocks*growthRate
nOutChannels = int(math.floor(nChannels*reduction))
self.trans1 = Transition(nChannels, nOutChannels)
nChannels = nOutChannels
self.dense2 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck)
nChannels += nDenseBlocks*growthRate
nOutChannels = int(math.floor(nChannels*reduction))
self.trans2 = Transition(nChannels, nOutChannels)
nChannels = nOutChannels
self.dense3 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck)
nChannels += nDenseBlocks*growthRate
self.bn1 = nn.BatchNorm2d(nChannels)
#self.conv_last = nn.Conv2d(nChannels,nClasses,1)
#self.bn2 = nn.BatchNorm2d(nClasses)
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
#self.softmax=nn.LogSoftmax(dim=1)
self.fc = nn.Linear(nChannels, nClasses)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight, std=0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0,0.01)
m.bias.data.zero_()
def _make_dense(self, nChannels, growthRate, nDenseBlocks, bottleneck):
layers = []
for i in range(int(nDenseBlocks)):
if bottleneck:
layers.append(Bottleneck(nChannels, growthRate))
else:
layers.append(SingleLayer(nChannels, growthRate))
nChannels += growthRate
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.trans1(self.dense1(out))
out = self.trans2(self.dense2(out))
out = self.dense3(out)
# out = torch.squeeze(F.avg_pool2d(F.relu(self.bn1(out)), 8))
out = F.relu(self.bn1(out),inplace=True)
#out=F.relu(self.bn2(self.conv_last(out)),inplace=True)
out=self.avgpool(out)
out = torch.squeeze(out,dim=2).squeeze(dim=2)
out = self.fc(out)
#out = self.fc(out)
# out_1, out_2, out_3, out_4 = out[:,:CLASS_NUM+1],out[:,CLASS_NUM+1:(CLASS_NUM+1)*2],out[:,(CLASS_NUM+1)*2:(CLASS_NUM+1)*3],out[:,(CLASS_NUM+1)*3:]
#
# out_1,out_2,out_3,out_4 = F.log_softmax(out_1,dim=1),F.log_softmax(out_2,dim=1),F.log_softmax(out_3,dim=1),F.log_softmax(out_4,dim=1)
#
# out = torch.cat((out_1,out_2,out_3,out_4),dim=1)
return out
if __name__ == "__main__":
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "6"
net = DenseNet()
net = net.cuda()
net.eval()
x = torch.zeros((64,3,160,60),dtype = torch.float32)
x=x.cuda()
y = net(x)
print(y.size())