-
Notifications
You must be signed in to change notification settings - Fork 104
/
Copy pathloader.py
329 lines (272 loc) · 10.2 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
from __future__ import print_function, division
import os
import re
import codecs
import unicodedata
from utils import create_dico, create_mapping, zero_digits
from utils import iob2, iob_iobes
import model
import string
import random
import numpy as np
def unicodeToAscii(s):
return ''.join(
c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn'
and c in string.ascii_letters + " .,;'-"
)
def load_sentences(path, lower, zeros):
"""
Load sentences. A line must contain at least a word and its tag.
Sentences are separated by empty lines.
"""
sentences = []
sentence = []
for line in codecs.open(path, 'r', 'utf-8'):
line = zero_digits(line.rstrip()) if zeros else line.rstrip()
if not line:
if len(sentence) > 0:
if 'DOCSTART' not in sentence[0][0]:
sentences.append(sentence)
sentence = []
else:
word = line.split()
assert len(word) >= 2
sentence.append(word)
if len(sentence) > 0:
if 'DOCSTART' not in sentence[0][0]:
sentences.append(sentence)
return sentences
def update_tag_scheme(sentences, tag_scheme):
"""
Check and update sentences tagging scheme to IOB2.
Only IOB1 and IOB2 schemes are accepted.
"""
for i, s in enumerate(sentences):
tags = [w[-1] for w in s]
# Check that tags are given in the IOB format
if not iob2(tags):
s_str = '\n'.join(' '.join(w) for w in s)
raise Exception('Sentences should be given in IOB format! ' +
'Please check sentence %i:\n%s' % (i, s_str))
if tag_scheme == 'iob':
# If format was IOB1, we convert to IOB2
for word, new_tag in zip(s, tags):
word[-1] = new_tag
elif tag_scheme == 'iobes':
new_tags = iob_iobes(tags)
for word, new_tag in zip(s, new_tags):
word[-1] = new_tag
else:
raise Exception('Unknown tagging scheme!')
def word_mapping(sentences, lower):
"""
Create a dictionary and a mapping of words, sorted by frequency.
"""
words = [[x[0].lower() if lower else x[0] for x in s] for s in sentences]
dico = create_dico(words)
dico['<PAD>'] = 10000001
dico['<UNK>'] = 10000000
dico = {k:v for k,v in dico.items() if v>=3}
word_to_id, id_to_word = create_mapping(dico)
print("Found %i unique words (%i in total)" % (
len(dico), sum(len(x) for x in words)
))
return dico, word_to_id, id_to_word
def char_mapping(sentences):
"""
Create a dictionary and mapping of characters, sorted by frequency.
"""
chars = ["".join([w[0] for w in s]) for s in sentences]
dico = create_dico(chars)
dico['<PAD>'] = 10000000
# dico[';'] = 0
char_to_id, id_to_char = create_mapping(dico)
print("Found %i unique characters" % len(dico))
return dico, char_to_id, id_to_char
def tag_mapping(sentences):
"""
Create a dictionary and a mapping of tags, sorted by frequency.
"""
tags = [[word[-1] for word in s] for s in sentences]
dico = create_dico(tags)
dico[model.START_TAG] = -1
dico[model.STOP_TAG] = -2
tag_to_id, id_to_tag = create_mapping(dico)
print("Found %i unique named entity tags" % len(dico))
return dico, tag_to_id, id_to_tag
def cap_feature(s):
"""
Capitalization feature:
0 = low caps
1 = all caps
2 = first letter caps
3 = one capital (not first letter)
"""
if s.lower() == s:
return 0
elif s.upper() == s:
return 1
elif s[0].upper() == s[0]:
return 2
else:
return 3
def prepare_sentence(str_words, word_to_id, char_to_id, lower=False):
"""
Prepare a sentence for evaluation.
"""
def f(x): return x.lower() if lower else x
words = [word_to_id[f(w) if f(w) in word_to_id else '<UNK>']
for w in str_words]
chars = [[char_to_id[c] for c in w if c in char_to_id]
for w in str_words]
caps = [cap_feature(w) for w in str_words]
return {
'str_words': str_words,
'words': words,
'chars': chars,
'caps': caps
}
def prepare_dataset(sentences, word_to_id, char_to_id, tag_to_id, lower=True):
"""
Prepare the dataset. Return a list of lists of dictionaries containing:
- word indexes
- word char indexes
- tag indexes
"""
def f(x): return x.lower() if lower else x
data = []
for s in sentences:
str_words = [w[0] for w in s]
words = [word_to_id[f(w) if f(w) in word_to_id else '<UNK>']
for w in str_words]
# Skip characters that are not in the training set
chars = [[char_to_id[c] for c in w if c in char_to_id]
for w in str_words]
caps = [cap_feature(w) for w in str_words]
tags = [tag_to_id[w[-1]] for w in s]
data.append({
'str_words': str_words,
'words': words,
'chars': chars,
'caps': caps,
'tags': tags,
})
return data
def augment_with_pretrained(dictionary, ext_emb_path, words):
"""
Augment the dictionary with words that have a pretrained embedding.
If `words` is None, we add every word that has a pretrained embedding
to the dictionary, otherwise, we only add the words that are given by
`words` (typically the words in the development and test sets.)
"""
print('Loading pretrained embeddings from %s...' % ext_emb_path)
assert os.path.isfile(ext_emb_path)
# Load pretrained embeddings from file
pretrained = set([
line.rstrip().split()[0].strip()
for line in codecs.open(ext_emb_path, 'r', 'utf-8')
if len(ext_emb_path) > 0
])
# We either add every word in the pretrained file,
# or only words given in the `words` list to which
# we can assign a pretrained embedding
if words is None:
for word in pretrained:
if word not in dictionary:
dictionary[word] = 0
else:
for word in words:
if any(x in pretrained for x in [
word,
word.lower(),
re.sub('\d', '0', word.lower())
]) and word not in dictionary:
dictionary[word] = 0
word_to_id, id_to_word = create_mapping(dictionary)
return dictionary, word_to_id, id_to_word
def pad_seq(seq, max_length, PAD_token=0):
# add pads
seq += [PAD_token for i in range(max_length - len(seq))]
return seq
def get_batch(start, batch_size, datas, singletons=[]):
input_seqs = []
target_seqs = []
chars2_seqs = []
for data in datas[start:start+batch_size]:
# pair is chosen from pairs randomly
words = []
for word in data['words']:
if word in singletons and np.random.uniform() < 0.5:
words.append(1)
else:
words.append(word)
input_seqs.append(data['words'])
target_seqs.append(data['tags'])
chars2_seqs.append(data['chars'])
if input_seqs == []:
return [], [], [], [], [], []
seq_pairs = sorted(zip(input_seqs, target_seqs, chars2_seqs), key=lambda p: len(p[0]), reverse=True)
input_seqs, target_seqs, chars2_seqs = zip(*seq_pairs)
chars2_seqs_lengths = []
chars2_seqs_padded = []
for chars2 in chars2_seqs:
chars2_lengths = [len(c) for c in chars2]
chars2_padded = [pad_seq(c, max(chars2_lengths)) for c in chars2]
chars2_seqs_padded.append(chars2_padded)
chars2_seqs_lengths.append(chars2_lengths)
input_lengths = [len(s) for s in input_seqs]
# input_padded is batch * max_length
input_padded = [pad_seq(s, max(input_lengths)) for s in input_seqs]
target_lengths = [len(s) for s in target_seqs]
assert target_lengths == input_lengths
# target_padded is batch * max_length
target_padded = [pad_seq(s, max(target_lengths)) for s in target_seqs]
# var is max_length * batch_size
# input_var = Variable(torch.LongTensor(input_padded)).transpose(0, 1)
# target_var = Variable(torch.LongTensor(target_padded)).transpose(0, 1)
#
# if use_gpu:
# input_var = input_var.cuda()
# target_var = target_var.cuda()
return input_padded, input_lengths, target_padded, target_lengths, chars2_seqs_padded, chars2_seqs_lengths
def random_batch(batch_size, train_data, singletons=[]):
input_seqs = []
target_seqs = []
chars2_seqs = []
for i in range(batch_size):
# pair is chosen from pairs randomly
data = random.choice(train_data)
words = []
for word in data['words']:
if word in singletons and np.random.uniform() < 0.5:
words.append(1)
else:
words.append(word)
input_seqs.append(data['words'])
target_seqs.append(data['tags'])
chars2_seqs.append(data['chars'])
seq_pairs = sorted(zip(input_seqs, target_seqs, chars2_seqs), key=lambda p: len(p[0]), reverse=True)
input_seqs, target_seqs, chars2_seqs = zip(*seq_pairs)
chars2_seqs_lengths = []
chars2_seqs_padded = []
for chars2 in chars2_seqs:
chars2_lengths = [len(c) for c in chars2]
chars2_padded = [pad_seq(c, max(chars2_lengths)) for c in chars2]
chars2_seqs_padded.append(chars2_padded)
chars2_seqs_lengths.append(chars2_lengths)
input_lengths = [len(s) for s in input_seqs]
# input_padded is batch * max_length
input_padded = [pad_seq(s, max(input_lengths)) for s in input_seqs]
target_lengths = [len(s) for s in target_seqs]
assert target_lengths == input_lengths
# target_padded is batch * max_length
target_padded = [pad_seq(s, max(target_lengths)) for s in target_seqs]
# var is max_length * batch_size
# input_var = Variable(torch.LongTensor(input_padded)).transpose(0, 1)
# target_var = Variable(torch.LongTensor(target_padded)).transpose(0, 1)
#
# if use_gpu:
# input_var = input_var.cuda()
# target_var = target_var.cuda()
return input_padded, input_lengths, target_padded, target_lengths, chars2_seqs_padded, chars2_seqs_lengths