Skip to content

Latest commit

 

History

History
125 lines (104 loc) · 4.95 KB

README.md

File metadata and controls

125 lines (104 loc) · 4.95 KB

KAT: kernel attention Transformer for histopathology whole slide image classification

This is a PyTorch implementation of the paper KAT:

Data preparation

The structure of the whole slide image dataset to run the code.

# Take a lung cancer dataset collected from TCGA as the example.
./data                                                              # The directory of the data.
├─ TCGA-55-8510-01Z-00-DX1.BB1EAC72-6215-400B-BCBF-E3D51A60182D     # The directory for a slide.
│  ├─ Large                                                         # The directory of image tiles in Level 0 (40X lens).
│  │  ├─ 0000_0000.jpg                                              # The image tile in Row 0 and Column 0.
│  │  ├─ 0000_0001.jpg                                              # The image tile in Row 0 and Column 1.
│  │  └─ ...
│  ├─ Medium                                                        # The directory of image tiles in Level 1 (20X lens).
│  │  ├─ 0000_0000.jpg
│  │  ├─ 0000_0001.jpg
│  │  └─ ...
│  ├─ Small                                                         # The directory of image tiles in Level 2 (10X lens).
│  │  ├─ 0000_0000.jpg
│  │  ├─ 0000_0001.jpg
│  │  └─ ...
│  ├─ Overview                                                      # The directory of image tiles in Level 3 (5X lens).
│  │  ├─ 0000_0000.jpg
│  │  ├─ 0000_0001.jpg
│  │  └─ ...
│  └─ Overview.jpg                                                  # The thumbnail of the WSI in Level 3.     
│     
├─ TCGA-44-3919-01A-01-BS1.9251d6ad-dab8-42fd-836d-1b18e5d2afed
└─ ...

Generate configuration file for the dataset.

python dataset/configure_dataset.py

Train

Run the codes on a single GPU:

CONFIG_FILE='configs/tcga_lung.yaml'
WORKERS=8
GPU=0

python cnn_sample.py --cfg $CONFIG_FILE --num-workers $WORKERS
for((FOLD=0;FOLD<5;FOLD++)); 
do
    python cnn_train_cl.py --cfg $CONFIG_FILE --fold $FOLD\
        --epochs 21 --batch-size 100 --workers $WORKERS\
        --fix-pred-lr --eval-freq 2 --gpu $GPU

    python cnn_wsi_encode.py --cfg $CONFIG_FILE --fold $FOLD\
        --batch-size 512 --num-workers $WORKERS --gpu $GPU

    python kat_train.py --cfg $CONFIG_FILE --fold $FOLD --node-aug\
        --num-epochs 200 --batch-size 32 --num-workers $WORKERS  --weighted-sample\
        --eval-freq 5 --gpu $GPU
done 

Run the codes on multiple GPUs:

CONFIG_FILE='configs/tcga_lung.yaml'
WORKERS=8
WORLD_SIZE=1

python cnn_sample.py --cfg $CONFIG_FILE --num-workers $WORKERS

for((FOLD=0;FOLD<5;FOLD++)); 
do
    python cnn_train_cl.py --cfg $CONFIG_FILE --fold $FOLD\
        --epochs 21 --batch-size 400 workers $WORKERS\
        --fix-pred-lr --eval-freq 2\
        --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size $WORLD_SIZE --rank 0

    python cnn_wsi_encode.py --cfg $CONFIG_FILE --fold $FOLD\
        --batch-size 512 --num-workers $WORKERS\
        --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size $WORLD_SIZE --rank 0

    python kat_train.py --cfg $CONFIG_FILE --fold $FOLD --node-aug\
        --num-epochs 200 --batch-size 128 --num-workers $WORKERS  --weighted-sample --eval-freq 5\
        --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size $WORLD_SIZE --rank 0
done

Train KAT with kernel contrastive learning (KCL)

In our extended work, we built a contrastive presentation learning module to the kernels for better accuracy and generalization.
Run katcl_train.py instead of kat_train.py if you want to use the contrastive learning module.

Run on a single GPU:

python katcl_train.py --cfg $CONFIG_FILE --fold $FOLD \
        --num-epochs 200 --batch-size 32 --num-workers $WORKERS  --weighted-sample\
        --eval-freq 5 --gpu $GPU

Run on on multiple GPUs:

python katcl_train.py --cfg $CONFIG_FILE --fold $FOLD \
        --num-epochs 200 --batch-size 128 --num-workers $WORKERS  --weighted-sample --eval-freq 5\
        --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size $WORLD_SIZE --rank 0

If the code is helpful to your research, please cite:

@inproceedings{zheng2022kernel,
    author    = {Yushan Zheng, Jun Li, Jun Shi, Fengying Xie, Zhiguo Jiang},
    title     = {Kernel Attention Transformer (KAT) for Histopathology Whole Slide Image Classification},
    booktitle = {Medical Image Computing and Computer Assisted Intervention 
                -- MICCAI 2022},
    pages     = {283--292},
    year      = {2022}
}

@article{zheng2023kernel,
    author    = {Yushan Zheng, Jun Li, Jun Shi, Fengying Xie, Jianguo Huai, Ming Cao, Zhiguo Jiang},
    title     = {Kernel Attention Transformer for Histopathology Whole Slide Image Analysis and Assistant Cancer Diagnosis},
    journal   = {IEEE Transactions on Medical Imaging},
    year      = {2023}
}