forked from xindongzhang/ECBSR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
220 lines (193 loc) · 11.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import torch
import torch.nn as nn
import torch.nn.functional as F
from datas.benchmark import Benchmark
from datas.div2k import DIV2K
from models.ecbsr import ECBSR
from torch.utils.data import DataLoader
import math
import argparse, yaml
import utils
import os
from tqdm import tqdm
import logging
import sys
import time
parser = argparse.ArgumentParser(description='ECBSR')
## yaml configuration files
parser.add_argument('--config', type=str, default=None, help = 'pre-config file for training')
## paramters for ecbsr
parser.add_argument('--scale', type=int, default=2, help = 'scale for sr network')
parser.add_argument('--colors', type=int, default=1, help = '1(Y channls of YCbCr)')
parser.add_argument('--m_ecbsr', type=int, default=4, help = 'number of ecb')
parser.add_argument('--c_ecbsr', type=int, default=8, help = 'channels of ecb')
parser.add_argument('--idt_ecbsr', type=int, default=0, help = 'incorporate identity mapping in ecb or not')
parser.add_argument('--act_type', type=str, default='prelu', help = 'prelu, relu, splus, rrelu')
parser.add_argument('--pretrain', type=str, default=None, help = 'path of pretrained model')
## parameters for model training
parser.add_argument('--patch_size', type=int, default=64, help = 'patch size of HR image')
parser.add_argument('--batch_size', type=int, default=32, help = 'batch size of training data')
parser.add_argument('--data_repeat', type=int, default=1, help = 'times of repetition for training data')
parser.add_argument('--data_augment', type=int, default=1, help = 'data augmentation for training')
parser.add_argument('--epochs', type=int, default=600, help = 'number of epochs')
parser.add_argument('--test_every', type=int, default=1, help = 'test the model every N epochs')
parser.add_argument('--log_every', type=int, default=1, help = 'print log of loss, every N steps')
parser.add_argument('--log_path', type=str, default="./experiments/")
parser.add_argument('--lr', type=float, default=5e-4, help = 'learning rate of optimizer')
parser.add_argument('--store_in_ram', type=int, default=0, help = 'store the whole training data in RAM or not')
## hardware specification
parser.add_argument('--gpu_id', type=int, default=0, help = 'gpu id for training')
parser.add_argument('--threads', type=int, default=1, help = 'number of threads for training')
## dataset specification
parser.add_argument('--div2k_hr_path', type=str, default='/Users/xindongzhang/Documents/SRData/DIV2K/DIV2K_train_HR', help = '')
parser.add_argument('--div2k_lr_path', type=str, default='/Users/xindongzhang/Documents/SRData/DIV2K/DIV2K_train_LR_bicubic', help = '')
parser.add_argument('--set5_hr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/Set5/HR', help = '')
parser.add_argument('--set5_lr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/Set5/LR_bicubic', help = '')
parser.add_argument('--set14_hr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/Set14/HR', help = '')
parser.add_argument('--set14_lr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/Set14/LR_bicubic', help = '')
parser.add_argument('--b100_hr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/B100/HR', help = '')
parser.add_argument('--b100_lr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/B100/LR_bicubic', help = '')
parser.add_argument('--u100_hr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/Urban100/HR', help = '')
parser.add_argument('--u100_lr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/Urban100/LR_bicubic', help = '')
if __name__ == '__main__':
args = parser.parse_args()
if args.config:
opt = vars(args)
yaml_args = yaml.load(open(args.config), Loader=yaml.FullLoader)
opt.update(yaml_args)
if args.colors == 3:
raise ValueError("ECBSR is trained and tested with colors=1.")
device = None
if args.gpu_id >= 0 and torch.cuda.is_available():
print("use cuda & cudnn for acceleration!")
print("the gpu id is: {}".format(args.gpu_id))
device = torch.device('cuda:{}'.format(args.gpu_id))
torch.backends.cudnn.benchmark = True
else:
print("use cpu for training!")
device = torch.device('cpu')
torch.set_num_threads(args.threads)
div2k = DIV2K(
args.div2k_hr_path,
args.div2k_lr_path,
train=True,
augment=args.data_augment,
scale=args.scale,
colors=args.colors,
patch_size=args.patch_size,
repeat=args.data_repeat,
store_in_ram=args.store_in_ram
)
set5 = Benchmark(args.set5_hr_path, args.set5_lr_path, scale=args.scale, colors=args.colors, store_in_ram=args.store_in_ram)
set14 = Benchmark(args.set14_hr_path, args.set14_lr_path, scale=args.scale, colors=args.colors, store_in_ram=args.store_in_ram)
b100 = Benchmark(args.b100_hr_path, args.b100_lr_path, scale=args.scale, colors=args.colors, store_in_ram=args.store_in_ram)
u100 = Benchmark(args.u100_hr_path, args.u100_lr_path, scale=args.scale, colors=args.colors, store_in_ram=args.store_in_ram)
train_dataloader = DataLoader(dataset=div2k, num_workers=args.threads, batch_size=args.batch_size, shuffle=True, pin_memory=True, drop_last=True)
valid_dataloaders = []
valid_dataloaders += [{'name': 'set5', 'dataloader': DataLoader(dataset=set5, batch_size=1, shuffle=False)}]
valid_dataloaders += [{'name': 'set14', 'dataloader': DataLoader(dataset=set14, batch_size=1, shuffle=False)}]
valid_dataloaders += [{'name': 'b100', 'dataloader': DataLoader(dataset=b100, batch_size=1, shuffle=False)}]
valid_dataloaders += [{'name': 'u100', 'dataloader': DataLoader(dataset=u100, batch_size=1, shuffle=False)}]
## definitions of model, loss, and optimizer
model = ECBSR(module_nums=args.m_ecbsr, channel_nums=args.c_ecbsr, with_idt=args.idt_ecbsr, act_type=args.act_type, scale=args.scale, colors=args.colors).to(device)
loss_func = nn.L1Loss()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
if args.pretrain is not None:
print("load pretrained model: {}!".format(args.pretrain))
model.load_state_dict(torch.load(args.pretrain))
else:
print("train the model from scratch!")
## auto-generate the output logname
timestamp = utils.cur_timestamp_str()
experiment_name = "ecbsr-x{}-m{}c{}-{}-{}".format(args.scale, args.m_ecbsr, args.c_ecbsr, args.act_type, timestamp)
experiment_path = os.path.join(args.log_path, experiment_name)
if not os.path.exists(experiment_path):
os.makedirs(experiment_path)
experiment_model_path = os.path.join(experiment_path, 'models')
if not os.path.exists(experiment_model_path):
os.makedirs(experiment_model_path)
log_name = os.path.join(experiment_path, "log.txt")
sys.stdout = utils.ExperimentLogger(log_name, sys.stdout)
stat_dict = utils.get_stat_dict()
## save training paramters
exp_params = vars(args)
exp_params_name = os.path.join(experiment_path, 'config.yml')
with open(exp_params_name, 'w') as exp_params_file:
yaml.dump(exp_params, exp_params_file, default_flow_style=False)
timer_start = time.time()
for epoch in range(args.epochs):
epoch_loss = 0.0
stat_dict['epochs'] = epoch
model = model.train()
print("##===========Epoch: {}=============##".format(epoch))
for iter, batch in enumerate(train_dataloader):
optimizer.zero_grad()
lr, hr = batch
lr, hr = lr.to(device), hr.to(device)
sr = model(lr)
loss = loss_func(sr, hr)
loss.backward()
optimizer.step()
epoch_loss += float(loss)
if (iter + 1) % args.log_every == 0:
cur_steps = (iter+1)*args.batch_size
total_steps = len(train_dataloader.dataset)
fill_width = math.ceil(math.log10(total_steps))
cur_steps = str(cur_steps).zfill(fill_width)
epoch_width = math.ceil(math.log10(args.epochs))
cur_epoch = str(epoch).zfill(epoch_width)
avg_loss = epoch_loss / (iter + 1)
stat_dict['losses'].append(avg_loss)
timer_end = time.time()
duration = timer_end - timer_start
timer_start = timer_end
print("Epoch:{}, {}/{}, loss: {:.4f}, time: {:.3f}".format(cur_epoch, cur_steps, total_steps, avg_loss, duration))
if (epoch + 1) % args.test_every == 0:
torch.set_grad_enabled(False)
test_log = ""
model = model.eval()
for valid_dataloader in valid_dataloaders:
avg_psnr = 0.0
avg_ssim = 0.0
name = valid_dataloader['name']
loader = valid_dataloader['dataloader']
for lr, hr in tqdm(loader, ncols=80):
lr, hr = lr.to(device), hr.to(device)
sr = model(lr)
# crop
hr = hr[:, :, args.scale:-args.scale, args.scale:-args.scale]
sr = sr[:, :, args.scale:-args.scale, args.scale:-args.scale]
# quantize
hr = hr.clamp(0, 255)
sr = sr.clamp(0, 255)
# calculate psnr
psnr = utils.calc_psnr(sr, hr)
ssim = utils.calc_ssim(sr, hr)
avg_psnr += psnr
avg_ssim += ssim
avg_psnr = round(avg_psnr/len(loader), 2)
avg_ssim = round(avg_ssim/len(loader), 4)
stat_dict[name]['psnrs'].append(avg_psnr)
stat_dict[name]['ssims'].append(avg_ssim)
if stat_dict[name]['best_psnr']['value'] < avg_psnr:
stat_dict[name]['best_psnr']['value'] = avg_psnr
stat_dict[name]['best_psnr']['epoch'] = epoch
if stat_dict[name]['best_ssim']['value'] < avg_ssim:
stat_dict[name]['best_ssim']['value'] = avg_ssim
stat_dict[name]['best_ssim']['epoch'] = epoch
test_log += "[{}-X{}], PSNR/SSIM: {:.2f}/{:.4f} (Best: {:.2f}/{:.4f}, Epoch: {}/{})\n".format(
name, args.scale, float(avg_psnr), float(avg_ssim),
stat_dict[name]['best_psnr']['value'], stat_dict[name]['best_ssim']['value'],
stat_dict[name]['best_psnr']['epoch'], stat_dict[name]['best_ssim']['epoch'])
# print log & flush out
print(test_log)
sys.stdout.flush()
# save model
saved_model_path = os.path.join(experiment_model_path, 'model_x{}_{}.pt'.format(args.scale, epoch))
torch.save(model.state_dict(), saved_model_path)
torch.set_grad_enabled(True)
# save stat dict
## save training paramters
stat_dict_name = os.path.join(experiment_path, 'stat_dict.yml')
with open(stat_dict_name, 'w') as stat_dict_file:
yaml.dump(stat_dict, stat_dict_file, default_flow_style=False)