forked from martinventer/virtual_creatures
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRL_001.py
228 lines (156 loc) · 6.38 KB
/
RL_001.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from types import SimpleNamespace
import plaidml.keras
plaidml.keras.install_backend()
import plaidml.keras.backend
import sys
import random
import numpy as np
import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn.preprocessing import LabelBinarizer, StandardScaler
from Tools.Classes import Creature
def create_model():
from keras.layers import (ELU, Activation, BatchNormalization, Dense, Dropout,
InputLayer, Flatten, Reshape, LSTM, TimeDistributed)
from keras.models import Sequential
from keras.utils import plot_model
from PIL import Image
""" ----------------------------- VANILLA ARTIFICIAL NEURAL NETWORK ----------------------------- """
model = Sequential()
model.add(InputLayer(input_shape=(1,)))
model.add(Dense(10, activation='relu'))
model.add(Dense(60, activation='relu'))
model.add(Reshape((10, 6)))
model.add(Dense(10, activation='softmax'))
# model.compile(loss='mse', optimizer='adam', metrics=['mae'])
# model = Sequential()
# model.add(LSTM(100, input_shape=(10,6), return_sequences=True))
# model.add(LSTM(500, return_sequences=True))
# model.add(LSTM(250, return_sequences=True))
# model.add(LSTM(125, return_sequences=True))
# model.add(LSTM(10))
# model.add(Dropout(rate=0.25))
# model.add(Dense(1))
# model.add(Activation('softmax'))
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy'])
plot_model(model, 'model.png', show_layer_names=True, show_shapes=True)
Image.open('model.png').show()
return model
def extract_rules(dictionary):
for val in dictionary.values():
if isinstance(val, dict):
yield from extract_rules(val)
else:
yield val
def start_RL(gen_pars, rl_pars):
model = create_model()
choices = list(gen_pars.get('variables')) + list(gen_pars.get('constants'))
onehot = LabelBinarizer(sparse_output=False)
choices_OH = onehot.fit_transform(choices)
gen_pars['choices'] = {key: value for (key, value) in enumerate(choices_OH)}
gen_pars['num_choices'] = len(choices)
gen_pars['rules'] = {'X': {1: ' ', 2: ' '}}
rules = list(extract_rules(gen_pars['rules']))
rule_vec = []
rows = params.get('num_choices')
columns = len(''.join(rules))
reward_table = np.zeros((rows, columns))
for i in range(rl_pars.get('iterations')):
rl_pars['eps'] *= rl_pars['decay']
if i % 100 == 0:
sys.stdout.write('Iteration {} of {} \n'.format(
i+1, rl_pars.get('iterations')))
done = False
while not done:
if np.random.random() < rl_params.get('eps'):
rule_vec_chars = ''.join([np.random.choice(choices) for _ in range(10)])
else:
rule_vec_chars = ''.join([np.random.choice(choices) for _ in range(10)])
# rule_vec += [model.predict()]
# pass
rule_vec_OH = onehot.transform(list(rule_vec_chars))[np.newaxis, :, :]
rule_1 = (rule_vec_chars[:5])
rule_2 = (rule_vec_chars[5:])
gen_pars['rules'] = {
'X': {
1: rule_1,
2: rule_2,
}}
indi = Creature(gen_pars)
print(indi.l_string)
model_output = np.asarray(indi.fitness).reshape(-1,1)
model_input = rule_vec_OH
model.fit(model_input, model_output, epochs=1, verbose=2)
# prediction = model.predict(np.asarray(indi.fitness * 0.9).reshape(-1,1))
# row_max = prediction.max(axis=1, keepdims=True)
# prediction[:] = np.where(prediction == row_max, 1, 0)
# prediction_chars = np.array([onehot.inverse_transform(vec) for vec in prediction])
# prediction_chars = prediction_chars[0]
# prediction_chars = ''.join(prediction_chars)
# rule_1 = (prediction_chars[:5])
# rule_2 = (prediction_chars[5:])
# gen_pars['rules'] = {
# 'X': {
# 1: rule_1,
# 2: rule_2,
# }}
# indi_2 = Creature(gen_pars)
# print('\nPredicted chars: \t' + prediction_chars)
# print('Predicted fitness: \t' + str(indi_2.fitness))
# # print('\nInput chars: \t' + rule_vec_chars)
# print('Input fitness: \t' + str(indi.fitness * 0.9))
# print()
predict_vec = onehot.transform(['F','F','F','F','F','F','F','F','F','F',])[np.newaxis, :, :]
print(model.predict(predict_vec))
def testRNN(gen_pars):
from Tools.Gen_Tools import open_file
from keras.callbacks import EarlyStopping
es = EarlyStopping(monitor='loss', verbose=1, patience=2)
model = create_model()
data = open_file()
data = data[['Rules', 'Fitness']]
data['Rules'] = data['Rules'].str.join('')
data = data[data['Rules'].map(len) == 10]
choices = list(gen_pars.get('variables')) + list(gen_pars.get('constants'))
binar = LabelBinarizer(sparse_output=False)
binar.fit_transform(choices)
# data['Rules'] = data['Rules'].map(
data['Rules'] = data['Rules'].map(list).map(binar.transform)
X = np.concatenate(data['Rules'].to_numpy())
X = X.reshape(-1,10,6)
scaler = StandardScaler()
Y = scaler.fit_transform(data[['Fitness']])
idx = int(len(X) * 0.9)
X_train = X[:5000]
Y_train = Y[:5000]
X_test = X[5001:10000]
Y_test = Y[5001:10000]
model.fit(X_train, Y_train, epochs=1, verbose=1, callbacks=[es])
print(model.evaluate(X_test, Y_test))
for i in np.random.randint(0, 5000, 5):
print('L-string: \t {} \t Predicted area: \t {} \t Actual area: \t {}'.format(
X_test[i],
scaler.inverse_transform(model.predict(X_test[i])),
scaler.inverse_transform(Y_test[i])
))
if __name__ == "__main__":
params = {
'chars': 500,
'recurs': 5,
'variables': 'X',
'constants': 'F+-[]',
'axiom': 'FX',
'length': 1.0,
'angle': 25,
'prune': False,
'pairwise': True,
'rule_length': 5,
}
rl_params = {
'y': 0.95,
'eps': 0.5,
'decay': 0.999,
'iterations': 1000
}
testRNN(params)
# start_RL(params, rl_params)