-
Notifications
You must be signed in to change notification settings - Fork 1
/
laprop.py
104 lines (85 loc) · 4.58 KB
/
laprop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
from torch.optim import Optimizer
import math
import torch
class LaProp(Optimizer):
def __init__(self, params, lr=4e-4, betas=(0.9, 0.999), eps=1e-15,
weight_decay=0, amsgrad=False, centered=False):
self.steps_before_using_centered = 10
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, amsgrad=amsgrad, centered=centered)
super(LaProp, self).__init__(params, defaults)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
amsgrad = group['amsgrad']
centered = group['centered']
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of learning rates
state['exp_avg_lr_1'] = 0.; state['exp_avg_lr_2'] = 0.
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
if centered:
# Exponential moving average of gradient values as calculated by beta2
state['exp_mean_avg_beta2'] = torch.zeros_like(p.data)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
if centered:
exp_mean_avg_beta2 = state['exp_mean_avg_beta2']
if amsgrad:
max_exp_avg_sq = state['max_exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
# Decay the first and second moment running average coefficient
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
state['exp_avg_lr_1'] = state['exp_avg_lr_1'] * beta1 + (1 - beta1) * group['lr']
state['exp_avg_lr_2'] = state['exp_avg_lr_2'] * beta2 + (1 - beta2)
bias_correction1 = state['exp_avg_lr_1'] / group['lr'] if group['lr']!=0. else 1. #1 - beta1 ** state['step']
step_size = 1 / bias_correction1
bias_correction2 = state['exp_avg_lr_2']
denom = exp_avg_sq
if centered:
exp_mean_avg_beta2.mul_(beta2).add_(1 - beta2, grad)
if state['step'] > self.steps_before_using_centered:
mean = exp_mean_avg_beta2 ** 2
denom = denom - mean
if amsgrad:
if not (centered and state['step'] <= self.steps_before_using_centered):
# Maintains the maximum of all (centered) 2nd moment running avg. till now
torch.max(max_exp_avg_sq, denom, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
denom = max_exp_avg_sq
denom = denom.div(bias_correction2).sqrt_().add_(group['eps'])
step_of_this_grad = grad / denom
exp_avg.mul_(beta1).add_( (1 - beta1) * group['lr'], step_of_this_grad)
p.data.add_(-step_size, exp_avg )
if group['weight_decay'] != 0:
p.data.add_( - group['weight_decay'], p.data)
return loss