forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
psp_head.py
117 lines (102 loc) · 3.78 KB
/
psp_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmseg.registry import MODELS
from ..utils import resize
from .decode_head import BaseDecodeHead
class PPM(nn.ModuleList):
"""Pooling Pyramid Module used in PSPNet.
Args:
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
Module.
in_channels (int): Input channels.
channels (int): Channels after modules, before conv_seg.
conv_cfg (dict|None): Config of conv layers.
norm_cfg (dict|None): Config of norm layers.
act_cfg (dict): Config of activation layers.
align_corners (bool): align_corners argument of F.interpolate.
"""
def __init__(self, pool_scales, in_channels, channels, conv_cfg, norm_cfg,
act_cfg, align_corners, **kwargs):
super().__init__()
self.pool_scales = pool_scales
self.align_corners = align_corners
self.in_channels = in_channels
self.channels = channels
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
for pool_scale in pool_scales:
self.append(
nn.Sequential(
nn.AdaptiveAvgPool2d(pool_scale),
ConvModule(
self.in_channels,
self.channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
**kwargs)))
def forward(self, x):
"""Forward function."""
ppm_outs = []
for ppm in self:
ppm_out = ppm(x)
upsampled_ppm_out = resize(
ppm_out,
size=x.size()[2:],
mode='bilinear',
align_corners=self.align_corners)
ppm_outs.append(upsampled_ppm_out)
return ppm_outs
@MODELS.register_module()
class PSPHead(BaseDecodeHead):
"""Pyramid Scene Parsing Network.
This head is the implementation of
`PSPNet <https://arxiv.org/abs/1612.01105>`_.
Args:
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
Module. Default: (1, 2, 3, 6).
"""
def __init__(self, pool_scales=(1, 2, 3, 6), **kwargs):
super().__init__(**kwargs)
assert isinstance(pool_scales, (list, tuple))
self.pool_scales = pool_scales
self.psp_modules = PPM(
self.pool_scales,
self.in_channels,
self.channels,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
align_corners=self.align_corners)
self.bottleneck = ConvModule(
self.in_channels + len(pool_scales) * self.channels,
self.channels,
3,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
def _forward_feature(self, inputs):
"""Forward function for feature maps before classifying each pixel with
``self.cls_seg`` fc.
Args:
inputs (list[Tensor]): List of multi-level img features.
Returns:
feats (Tensor): A tensor of shape (batch_size, self.channels,
H, W) which is feature map for last layer of decoder head.
"""
x = self._transform_inputs(inputs)
psp_outs = [x]
psp_outs.extend(self.psp_modules(x))
psp_outs = torch.cat(psp_outs, dim=1)
feats = self.bottleneck(psp_outs)
return feats
def forward(self, inputs):
"""Forward function."""
output = self._forward_feature(inputs)
output = self.cls_seg(output)
return output