forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metafile.yaml
138 lines (138 loc) · 5.61 KB
/
metafile.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
Collections:
- Name: Segmenter
License: Apache License 2.0
Metadata:
Training Data:
- ADE20K
Paper:
Title: 'Segmenter: Transformer for Semantic Segmentation'
URL: https://arxiv.org/abs/2105.05633
README: configs/segmenter/README.md
Frameworks:
- PyTorch
Models:
- Name: segmenter_vit-t_mask_8xb1-160k_ade20k-512x512
In Collection: Segmenter
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 39.99
mIoU(ms+flip): 40.83
Config: configs/segmenter/segmenter_vit-t_mask_8xb1-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 8
Architecture:
- ViT-T_16
- Segmenter
- Mask
Training Resources: 8x V100 GPUS
Memory (GB): 1.21
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706-ffcf7509.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json
Paper:
Title: 'Segmenter: Transformer for Semantic Segmentation'
URL: https://arxiv.org/abs/2105.05633
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15
Framework: PyTorch
- Name: segmenter_vit-s_fcn_8xb1-160k_ade20k-512x512
In Collection: Segmenter
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.75
mIoU(ms+flip): 46.82
Config: configs/segmenter/segmenter_vit-s_fcn_8xb1-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 8
Architecture:
- ViT-S_16
- Segmenter
- Linear
Training Resources: 8x V100 GPUS
Memory (GB): 1.78
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713-39658c46.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713.log.json
Paper:
Title: 'Segmenter: Transformer for Semantic Segmentation'
URL: https://arxiv.org/abs/2105.05633
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15
Framework: PyTorch
- Name: segmenter_vit-s_mask_8xb1-160k_ade20k-512x512
In Collection: Segmenter
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 46.19
mIoU(ms+flip): 47.85
Config: configs/segmenter/segmenter_vit-s_mask_8xb1-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 8
Architecture:
- ViT-S_16
- Segmenter
- Mask
Training Resources: 8x V100 GPUS
Memory (GB): 2.03
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706-511bb103.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json
Paper:
Title: 'Segmenter: Transformer for Semantic Segmentation'
URL: https://arxiv.org/abs/2105.05633
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15
Framework: PyTorch
- Name: segmenter_vit-b_mask_8xb1-160k_ade20k-512x512
In Collection: Segmenter
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 49.6
mIoU(ms+flip): 51.07
Config: configs/segmenter/segmenter_vit-b_mask_8xb1-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 8
Architecture:
- ViT-B_16
- Segmenter
- Mask
Training Resources: 8x V100 GPUS
Memory (GB): 4.2
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706-bc533b08.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json
Paper:
Title: 'Segmenter: Transformer for Semantic Segmentation'
URL: https://arxiv.org/abs/2105.05633
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15
Framework: PyTorch
- Name: segmenter_vit-l_mask_8xb1-160k_ade20k-512x512
In Collection: Segmenter
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 52.16
mIoU(ms+flip): 53.65
Config: configs/segmenter/segmenter_vit-l_mask_8xb1-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 8
Architecture:
- ViT-L_16
- Segmenter
- Mask
Training Resources: 8x V100 GPUS
Memory (GB): 16.56
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750-7ef345be.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750.log.json
Paper:
Title: 'Segmenter: Transformer for Semantic Segmentation'
URL: https://arxiv.org/abs/2105.05633
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15
Framework: PyTorch