Skip to content

Latest commit

 

History

History
125 lines (105 loc) · 4.54 KB

File metadata and controls

125 lines (105 loc) · 4.54 KB

Faster R-CNN Int8 inference

Description

This document has instructions for running Faster R-CNN Int8 inference using Intel Optimized TensorFlow.

Datasets

The COCO validation dataset is used in the Faster R-CNN quickstart scripts. The scripts require that the dataset has been converted to the TF records format. See the COCO dataset for instructions on downloading and preprocessing the COCO validation dataset.

Set the DATASET_DIR to point to this directory when running Faster R-CNN.

Quick Start Scripts

Script name Description
int8_inference.sh Runs batch and online inference using the raw coco dataset
int8_accuracy.sh Runs inference and evaluates the model's accuracy with coco dataset in coco_val.record format

These quickstart scripts can be run in different environments:

Run the model

Setup your environment using the instructions below, depending on if you are using AI Kit:

Setup using AI Kit Setup without AI Kit

AI Kit does not currently support TF 1.15.2 models

To run without AI Kit you will need:

  • Python 3.6 or 3.7
  • git
  • numactl
  • wget
  • Protobuf Compilation
  • intel-tensorflow==1.15.2
  • Cython
  • contextlib2
  • jupyter
  • lxml
  • matplotlib
  • pillow>=9.3.0
  • pycocotools
  • A clone of the Model Zoo repo
    git clone https://github.com/IntelAI/models.git

Running Faster R-CNN Int8 inference also requires cloning the TensorFlow models repo using the tag specified below. Set the TF_MODELS_DIR environment variable to point to the TensorFlow models directory. Run the protobuf-compiler on the research directory.

# Clone the TF models repo
git clone https://github.com/tensorflow/models.git tf_models
pushd tf_models
git checkout tags/v1.12.0
export TF_MODELS_DIR=$(pwd)

# Run the protobuf-compiler from the TF models research directory
pushd research
wget -O protobuf.zip https://github.com/google/protobuf/releases/download/v3.0.0/protoc-3.0.0-linux-x86_64.zip
unzip protobuf.zip
./bin/protoc object_detection/protos/*.proto --python_out=.
rm protobuf.zip
popd
popd

Download the pretrained model and set the PRETRAINED_MODEL environment variable to point to the frozen graph. The quickstart scripts will use this var.

wget https://storage.googleapis.com/intel-optimized-tensorflow/models/faster_rcnn_int8_pretrained_model.pb
export PRETRAINED_MODEL=$(pwd)/faster_rcnn_int8_pretrained_model.pb

In addition to the TF_MODELS_DIR and PRETRAINED_MODEL variables from above, set environment variables for the path to your DATASET_DIR (where the coco TF records file is located) and an OUTPUT_DIR where log files will be written, then run a quickstart script.

# cd to your model zoo directory
cd models

export DATASET_DIR=<path to the coco dataset>
export OUTPUT_DIR=<path to the directory where log files will be written>
export TF_MODELS_DIR=<path to the TensorFlow models dir>
export PRETRAINED_MODEL=<path to the pretrained model frozen graph file>

./quickstart/object_detection/tensorflow/faster_rcnn/inference/cpu/int8/<script name>.sh

Additional Resources