Skip to content

Latest commit

 

History

History
109 lines (97 loc) · 3.92 KB

File metadata and controls

109 lines (97 loc) · 3.92 KB

BERT Large FP32 inference - Advanced Instructions

This document has advanced instructions for running BERT Large FP32 inference, which provides more control over the individual parameters that are used. For more information on using /benchmarks/launch_benchmark.py, see the launch benchmark documentation.

Prior to using these instructions, please follow the setup instructions from the model's README and/or the AI Kit documentation to get your environment setup (if running on bare metal) and download the dataset, pretrained model, etc. If you are using AI Kit, please exclude the --docker-image flag from the commands below, since you will be running the the TensorFlow conda environment instead of docker.

Any of the launch_benchmark.py commands below can be run on bare metal by removing the --docker-image arg. Ensure that you have all of the required prerequisites installed in your environment before running without the docker container.

If you are new to docker and are running into issues with the container, see this document for troubleshooting tips.

Once your environment is setup, navigate to the benchmarks directory of the model zoo and set environment variables for the dataset, checkpoint directory, frozen graph, and an output directory where log files will be written.

cd benchmarks

export DATASET_DIR=<path to the dataset>
export CHECKPOINT_DIR=<path to the pretrained model checkpoints>
export PRETRAINED_MODEL=<path to the frozen graph .pb file>
export OUTPUT_DIR=<directory where log files will be saved>

BERT Large inference can be run in three different modes:

  • Benchmark
    python launch_benchmark.py \
      --model-name=bert_large \
      --precision=fp32 \
      --mode=inference \
      --framework=tensorflow \
      --batch-size=128 \
      --data-location $DATASET_DIR \
      --checkpoint $CHECKPOINT_DIR \
      --in-graph $PRETRAINED_MODEL \
      --output-dir $OUTPUT_DIR \
      --docker-image intel/intel-optimized-tensorflow:tf-r2.5-icx-b631821f \
      --benchmark-only \
      -- infer_option=SQuAD
    
  • Profile
    python launch_benchmark.py \
      --model-name=bert_large \
      --precision=fp32 \
      --mode=inference \
      --framework=tensorflow \
      --batch-size=32 \
      --data-location $DATASET_DIR \
      --checkpoint $CHECKPOINT_DIR \
      --in-graph $PRETRAINED_MODEL \
      --docker-image intel/intel-optimized-tensorflow:tf-r2.5-icx-b631821f \
      --output-dir $OUTPUT_DIR \
      -- profile=True infer_option=SQuAD
    
  • Accuracy
    python launch_benchmark.py \
      --model-name=bert_large \
      --precision=fp32 \
      --mode=inference \
      --framework=tensorflow \
      --batch-size=32 \
      --data-location $DATASET_DIR \
      --checkpoint $CHECKPOINT_DIR \
      --in-graph $PRETRAINED_MODEL \
      --docker-image intel/intel-optimized-tensorflow:tf-r2.5-icx-b631821f \
      --output-dir $OUTPUT_DIR \
      --accuracy-only \
      -- infer_option=SQuAD
    

Output files and logs are saved to the ${OUTPUT_DIR} directory.

Note that args specific to this model are specified after -- at the end of the command (like the profile=True arg in the Profile command above. Below is a list of all of the model specific args and their default values:

Model arg Default value
doc_stride 128
max_seq_length 384
profile False
config_file bert_config.json
vocab_file vocab.txt
predict_file dev-v1.1.json
init_checkpoint model.ckpt-3649