This document has advanced instructions for running BERT Large FP32
inference, which provides more control over the individual parameters that
are used. For more information on using /benchmarks/launch_benchmark.py
,
see the launch benchmark documentation.
Prior to using these instructions, please follow the setup instructions from
the model's README and/or the
AI Kit documentation to get your environment
setup (if running on bare metal) and download the dataset, pretrained model, etc.
If you are using AI Kit, please exclude the --docker-image
flag from the
commands below, since you will be running the the TensorFlow conda environment
instead of docker.
Any of the launch_benchmark.py
commands below can be run on bare metal by
removing the --docker-image
arg. Ensure that you have all of the
required prerequisites installed in your environment
before running without the docker container.
If you are new to docker and are running into issues with the container, see this document for troubleshooting tips.
Once your environment is setup, navigate to the benchmarks
directory of
the model zoo and set environment variables for the dataset, checkpoint
directory, frozen graph, and an output directory where log files will be written.
cd benchmarks
export DATASET_DIR=<path to the dataset>
export CHECKPOINT_DIR=<path to the pretrained model checkpoints>
export PRETRAINED_MODEL=<path to the frozen graph .pb file>
export OUTPUT_DIR=<directory where log files will be saved>
BERT Large inference can be run in three different modes:
- Benchmark
python launch_benchmark.py \ --model-name=bert_large \ --precision=fp32 \ --mode=inference \ --framework=tensorflow \ --batch-size=128 \ --data-location $DATASET_DIR \ --checkpoint $CHECKPOINT_DIR \ --in-graph $PRETRAINED_MODEL \ --output-dir $OUTPUT_DIR \ --docker-image intel/intel-optimized-tensorflow:tf-r2.5-icx-b631821f \ --benchmark-only \ -- infer_option=SQuAD
- Profile
python launch_benchmark.py \ --model-name=bert_large \ --precision=fp32 \ --mode=inference \ --framework=tensorflow \ --batch-size=32 \ --data-location $DATASET_DIR \ --checkpoint $CHECKPOINT_DIR \ --in-graph $PRETRAINED_MODEL \ --docker-image intel/intel-optimized-tensorflow:tf-r2.5-icx-b631821f \ --output-dir $OUTPUT_DIR \ -- profile=True infer_option=SQuAD
- Accuracy
python launch_benchmark.py \ --model-name=bert_large \ --precision=fp32 \ --mode=inference \ --framework=tensorflow \ --batch-size=32 \ --data-location $DATASET_DIR \ --checkpoint $CHECKPOINT_DIR \ --in-graph $PRETRAINED_MODEL \ --docker-image intel/intel-optimized-tensorflow:tf-r2.5-icx-b631821f \ --output-dir $OUTPUT_DIR \ --accuracy-only \ -- infer_option=SQuAD
Output files and logs are saved to the ${OUTPUT_DIR} directory.
Note that args specific to this model are specified after --
at
the end of the command (like the profile=True
arg in the Profile
command above. Below is a list of all of the model specific args and
their default values:
Model arg | Default value |
---|---|
doc_stride | 128 |
max_seq_length | 384 |
profile | False |
config_file | bert_config.json |
vocab_file | vocab.txt |
predict_file | dev-v1.1.json |
init_checkpoint | model.ckpt-3649 |