From d0b4cf28957360fbbeee4e08ffcefbc5ffee688e Mon Sep 17 00:00:00 2001 From: Heike Hofmann Date: Thu, 25 Apr 2024 10:47:32 -0500 Subject: [PATCH] additional parameter in extracting a signal from a crosscut --- R/df_ccsig.R | 28 ++++++++++++++++++---------- man/df_ccsig.Rd | 3 +++ 2 files changed, 21 insertions(+), 10 deletions(-) diff --git a/R/df_ccsig.R b/R/df_ccsig.R index f58a5af..5669ba8 100644 --- a/R/df_ccsig.R +++ b/R/df_ccsig.R @@ -6,6 +6,7 @@ #' @param span1 A positive parameter to control the degree of smoothing in bullterxtrctr::cc_get_signature. #' @param span2 A positive parameter to control the degree of smoothing in bullterxtrctr::cc_get_signature. #' @param breaks_q A vector of quantiles to split the `x` values into five groups for t-test of large hooks. +#' @param outlier_cycles a positive integer for the number of times we check for outliers along the boundaries. #' @param ifplot A Boolean flag indicating whether to save ggplot lists in the output attributes. #' @return A data frame with two columns: #' * x: The `x` values from the `x3p` object. @@ -32,6 +33,7 @@ #' df_ccsig <- function(sig_df, span1 = 400, span2 = 40, breaks_q = c(0, 0.025, 0.05, 0.95, 0.975, 1), + outlier_cycles = 1, ifplot = FALSE) { assert_that( "data.frame" %in% class(sig_df), @@ -66,20 +68,26 @@ df_ccsig <- function(sig_df, span1 = 400, span2 = 40, slice_head(n = N) %>% arrange(x) - sigs <- sigs %>% mutate( - range_x = cut(x, - breaks = quantile(x, breaks_q), - include.lowest = TRUE, labels = c("left1", "left2", "middle", "right2", "right1") + while (outlier_cycles > 0) { + sigs <- sigs %>% mutate( + range_x = cut(x, + breaks = quantile(x, breaks_q), + include.lowest = TRUE, labels = c("left1", "left2", "middle", "right2", "right1") + ) ) - ) - # run a t-test in the boundaries to see if there are large 'hooks' - left <- t.test(sigs$sig[sigs$range_x == "left1"], sigs$sig[sigs$range_x == "left2"]) - right <- t.test(sigs$sig[sigs$range_x == "right1"], sigs$sig[sigs$range_x == "right2"]) + # run a t-test in the boundaries to see if there are large 'hooks' + left <- t.test(sigs$sig[sigs$range_x == "left1"], sigs$sig[sigs$range_x == "left2"]) + right <- t.test(sigs$sig[sigs$range_x == "right1"], sigs$sig[sigs$range_x == "right2"]) + + if (left$p.value < 0.01) sigs$sig[sigs$range_x == "left1"] <- NA + if (right$p.value < 0.01) sigs$sig[sigs$range_x == "right1"] <- NA - if (left$p.value < 0.01) sigs$sig[sigs$range_x == "left1"] <- NA - if (right$p.value < 0.01) sigs$sig[sigs$range_x == "right1"] <- NA + outlier_cycles <- outlier_cycles-1 + sigs <- sigs %>% + filter(!is.na(sig)) + } sig_df$sig <- sigs$sig sig_df <- sig_df %>% filter(!is.na(sig)) diff --git a/man/df_ccsig.Rd b/man/df_ccsig.Rd index 546b4f2..b65b0a1 100644 --- a/man/df_ccsig.Rd +++ b/man/df_ccsig.Rd @@ -9,6 +9,7 @@ df_ccsig( span1 = 400, span2 = 40, breaks_q = c(0, 0.025, 0.05, 0.95, 0.975, 1), + outlier_cycles = 1, ifplot = FALSE ) } @@ -21,6 +22,8 @@ df_ccsig( \item{breaks_q}{A vector of quantiles to split the \code{x} values into five groups for t-test of large hooks.} +\item{outlier_cycles}{a positive integer for the number of times we check for outliers along the boundaries.} + \item{ifplot}{A Boolean flag indicating whether to save ggplot lists in the output attributes.} } \value{