-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsemantic_energy_loss.py
93 lines (60 loc) · 3.59 KB
/
semantic_energy_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import h5py
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
# from vig_2classes import vig_ti_224_gelu
import numpy as np
def semantic_energy_loss(output_feature, nodes_label, regression, class_heat_maps,
lam1=2.0, lam2=0.02):
#'output_feature': (batch_size,dim,H,W), a feature matrix used for calculating similarity, extracted from our network.
# Each pixel in the matrix represents a fixed-size region of the original image.(H and W are the height and width of the downsampled image)
#'nodes_label':(batch_size,H,W), indicates which regions contain tumor cells. We set the value to 9 when a tumor cell is labeled.
#'regression': (batch_size,num_class,height,width) prediction heatmap, num_class=2 in our set(labeled tumor or unlabeled)
#'class_heat_maps': (batch_size,num_class,height,width) sparse ground truth
# note height!=H width!=W
B, dim, H, W = output_feature.shape
nodes_label = nodes_label.reshape(B, -1)
num_node = H * W
output_feature = output_feature.reshape(B, dim, num_node)
output_feature = output_feature.permute(0, 2, 1)
total_regression_energy = torch.zeros(B, 2, 32, 32).cuda()
mask = (nodes_label==9).cuda()
mask = mask.reshape(B, 1, num_node)
# calculating the number of labeled tumor cell
num_instances = mask.float().sum(dim=2).reshape(B, 1)
num_instances[num_instances == 0] = 1e-10
x1_normalized = output_feature / torch.norm(output_feature, dim=2, keepdim=True)
x2_normalized = output_feature / torch.norm(output_feature, dim=2, keepdim=True)
cos_distance = torch.einsum('ijk,ilk->ijl', x1_normalized, x2_normalized)
cos_distance=(1+cos_distance)/2
regression_energy=mask*cos_distance
regression_energy=torch.sum(regression_energy,dim=2)/num_instances
regression_energy=1-regression_energy
regression_energy[nodes_label == 9] = 1
stretched_feature_loss=0
for batch in range(B):
labeled_index= mask[batch,:,:]==True #labeled nodes
unlabeled_index= mask[batch,:,:]==False #unlabeled nodes
labeled_feature=output_feature[batch,labeled_index[0,:],:]
unlabeled_feature=output_feature[batch,unlabeled_index[0,:],:]
feature_distance=torch.cdist(labeled_feature, unlabeled_feature, p=2)
feature_distance=torch.exp(-(feature_distance-10))
feature_distance=torch.mean(feature_distance)
lam_labeled=num_instances[batch,:]/(num_node)
stretched_feature_loss=stretched_feature_loss+lam_labeled*feature_distance
stretched_feature_loss=stretched_feature_loss/B
stretched_feature_loss=stretched_feature_loss.squeeze()
total_regression_energy[:, 1] =regression_energy.reshape(B, H, W)
total_regression_energy[:, 0] =regression_energy.reshape(B, H, W)
#To resize total_regression_energy back to the original image size
#we have experimentally verified that there is essentially no difference between the
#results using 'bilinear' and 'nearest' interpolation methods.
total_regression_energy = F.interpolate(total_regression_energy, scale_factor=32, mode='bilinear')
class_heat_maps = class_heat_maps.type(torch.float32)
regression_loss=-class_heat_maps*torch.log(torch.clip(regression,1e-10,1.0))
regression_loss=regression_loss*total_regression_energy
regression_loss = torch.sum(regression_loss, dim=1)
regression_loss = torch.mean(regression_loss)
total_loss = lam1 * regression_loss + lam2 * stretched_feature_loss
return total_loss, regression_loss, stretched_feature_loss