forked from algaebrown/oligoCLIP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Snake_test_diff_bg.py
136 lines (115 loc) · 5.55 KB
/
Snake_test_diff_bg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# call peaks and normalize peaks lah
#configfile: "config.yaml"
#snakemake -j 12 -s Snake_test_diff_bg.py --configfile config/test_INPUT/SLBP.yaml --cluster "qsub -l walltime={params.run_time}:00:00 -l nodes=1:ppn={params.cores} -q home-yeo"
# downsample IP.bam
# run CLIPper again
# normalize to background again
from gettext import find
from tabnanny import check
from turtle import back
import pandas as pd
import os
import sys
import glob
workdir: config['WORKDIR']
SCRIPT_PATH = config['SCRIPT_PATH']
print(config)
clipper_peaks = {'katieoligo_SLBP_rep1': '/home/hsher/scratch/katie_drosphila/output/CLIPper/katieoligo_SLBP_rep1.peaks.bed',
'katieoligo_SLBP_rep2': '/home/hsher/scratch/katie_drosphila/output/CLIPper/katieoligo_SLBP_rep2.peaks.bed',
'Dan_singleplex_K562_rep1_SLBP': '/home/hsher/scratch/downsample_peak_from_eclipse/output/CLIPper/Dan_singleplex_K562_rep1_SLBP.peaks.bed',
'Dan_singleplex_K562_rep2_SLBP': '/home/hsher/scratch/downsample_peak_from_eclipse/output/CLIPper/Dan_singleplex_K562_rep2_SLBP.peaks.bed'}
ip_bams = {'katieoligo_SLBP_rep1': '/home/hsher/scratch/katie_drosphila/bams/genome/SLBP_CLIP1.genome-mappedSoSo.rmDupSo.Aligned.out.bam',
'katieoligo_SLBP_rep2': '/home/hsher/scratch/katie_drosphila/bams/genome/SLBP_CLIP2.genome-mappedSoSo.rmDupSo.Aligned.out.bam',
'Dan_singleplex_K562_rep1_SLBP': '/home/hsher/scratch/ABC_reprocess/K562_SLBP_rep1/bams/genome/SLBP.genome-mappedSoSo.rmDupSo.Aligned.out.bam',
'Dan_singleplex_K562_rep2_SLBP': '/home/hsher/scratch/ABC_reprocess/K562_SLBP_rep2/bams/genome/SLBP.genome-mappedSoSo.rmDupSo.Aligned.out.bam'}
k562_backgrounds = {'SLBP_SMINPUT':'/projects/ps-yeolab3/encode/analysis/encode_GRCh38_v1/262_INPUT_ATTCAGAA-TATAGCCT_L006_R1.unassigned.adapterTrim.round2.rmRep.rmDup.sorted.r2.bam',
'PRPF8_SMINPUT': '/home/hsher/scratch/encode_recall/encode3.278_01_PRPF8_INPUT.NIL.r1.fq.genome-mappedSo.rmDupSo.r2.bam',
'K562_multiplex_rep4': '/home/hsher/scratch/k562_rep4.sorted.bam',
}
hek_backgrounds = {'HEK293T_RNAseq': '/home/hsher/seqdata/20210702_293t_ribodep_rnaseq/SRR8181090Aligned.sortedByCoord.out.bam',
'SLBP_SMINPUT': '/home/hsher/scratch/SLBP/SLBP_nature2016/results/Nature2016_SLBP.SLBP_13_INPUT.NIL.r1.fq.genome-mappedSo.rmDupSo.r2.bam',
'RPS2_INPUT': '/home/hsher/scratch/katie_drosphila/bams/genome/RPS2_INPUT1.genome-mappedSoSo.rmDupSo.Aligned.out.bam'}
background_sets = {'katieoligo_SLBP_rep1': hek_backgrounds,
'katieoligo_SLBP_rep2': hek_backgrounds,
'Dan_singleplex_K562_rep1_SLBP': k562_backgrounds,
'Dan_singleplex_K562_rep2_SLBP': k562_backgrounds
}
def check_path(d):
for i in d.values():
if not os.path.isfile(i):
print(i)
check_path(clipper_peaks)
check_path(ip_bams)
check_path(k562_backgrounds)
check_path(hek_backgrounds)
module peak_anno:
snakefile:
"rules/Snake_peakanno.py"
config: config
module peak_call:
snakefile:
"rules/Snake_CLIPper.py"
config: config
def find_all_output(wildcards):
all_prefix = []
for ip in clipper_peaks.keys():
for in_ in background_sets[ip].keys():
#combination = f"output/{ip}/{in_}.peaks.normed.compressed.annotate.bed"
combination = f"summary/normalized/{ip}/{in_}.peaks.summary"
all_prefix.append(combination)
return all_prefix
print(find_all_output(config))
rule all:
input:
lambda wildcards: find_all_output(wildcards)
output:
"snakeCLIPtestinput.txt"
params:
error_out_file = "error_files/all",
run_time = 1,
cores = "1",
memory = "20",
job_name = "all"
shell:
"""
echo $(date) > {output};
echo created by HLH and the Yeo lab >> {output}
"""
rule count_read_num:
input:
bam_in=lambda wildcards: glob.glob(background_sets[wildcards.ip_name][wildcards.in_name])
output:
nread_in="output/{ip_name}/{in_name}.in.readnum.txt",
params:
run_time=2,
error_out_file = "error_files/countread",
cores = "1",
shell:
"""
module load samtools;
samtools view -cF 4 {input.bam_in} > {output.nread_in}
"""
use rule norm_peaks from peak_call as ssnorm_peak with:
input:
subsample_bam_ip=lambda wildcards: ip_bams[wildcards.ip_name],
subsample_bam_in=lambda wildcards: background_sets[wildcards.ip_name][wildcards.in_name],
nread_ip=lambda wildcards: clipper_peaks[wildcards.ip_name].replace('.peaks.bed', '.ip.readnum.txt').replace('CLIPper/', ''),
nread_in="output/{ip_name}/{in_name}.in.readnum.txt",
peak=lambda wildcards: clipper_peaks[wildcards.ip_name],
output:
norm_peak="output/{ip_name}/{in_name}.peaks.normed.bed"
use rule compress_peak from peak_call as compress_peak with:
input:
norm_peak="output/{ip_name}/{in_name}.peaks.normed.bed"
output:
compress_peak="output/{ip_name}/{in_name}.peaks.normed.compressed.bed"
use rule annotate from peak_anno as annotate_peak with:
input:
peak="output/{ip_name}/{in_name}.peaks.normed.compressed.bed"
output:
"output/{ip_name}/{in_name}.peaks.normed.compressed.annotate.bed"
use rule peak_summary_normalized from peak_anno with:
input:
peak="output/{ip_name}/{in_name}.peaks.normed.compressed.annotate.bed"
output:
summary_csv = "summary/normalized/{ip_name}/{in_name}.peaks.summary"