-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
211 lines (173 loc) · 8.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import numpy as np
import torch
import time
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import glob
import os
from utils import *
from model import *
from layers import *
from sklearn.preprocessing import MinMaxScaler
import shutil
import sys
import argparse as Ap
seed = 0x6a09e667f3bcc908
np.random.normal(seed & 0xFFFFFFFF)
torch.manual_seed(seed & 0xFFFFFFFF)
argp = Ap.ArgumentParser()
argp.add_argument("--tct", default='chicago', type=str, help="Target city")
argp.add_argument("--tr", default=7, type=int, help="Target region")
argp.add_argument("--tc", default=1, type=int, help="Target category")
argp.add_argument("--bs", default=42, type=int, help="Batch size")
argp.add_argument("--ts", default=120, type=int, help="Number of time steps")
argp.add_argument("--rts", default=20, type=int, help="Number of recent time steps")
argp.add_argument("--ncf", default=1, type=int, help="Number of crime features per time step")
argp.add_argument("--nxf", default=12, type=int, help="Number of external features per time step")
argp.add_argument("--gout", default=8, type=int, help="Dimension of output features of GAT")
argp.add_argument("--gatt", default=40, type=int, help="Dimension of attention module of GAT")
argp.add_argument("--rhid", default=40, type=int, help="Dimension of hidden state of SAB-LSTMs")
argp.add_argument("--ratt", default=30, type=int, help="Dimension of attention module of SAB-LSTMs")
argp.add_argument("--rl", default=1, type=int, help="Number of layers of SAB-LSTMs")
d = argp.parse_args(sys.argv[1:])
target_city = d.tct
target_region = d.tr
target_cat = d.tc
time_step = d.ts
recent_time_step = d.rts
batch_size = d.bs
gat_out = d.gout
gat_att = d.gatt
ncfeature = d.ncf
nxfeature = d.nxf
slstm_nhid = d.rhid
slstm_nlayer = d.rl
slstm_att = d.ratt
gen_gat_adj_file(target_city, target_region) # generate the adj_matrix file for GAT layers
loaded_data = torch.from_numpy(np.loadtxt("data/" + target_city + "/com_crime/r_" + str(target_region) + ".txt", dtype=int)).T
loaded_data = loaded_data[:, target_cat:target_cat+1]
x, y, x_daily, x_weekly = create_inout_sequences(loaded_data)
scale = MinMaxScaler(feature_range=(-1, 1))
x = torch.from_numpy(scale.fit_transform(x))
x_daily = torch.from_numpy(scale.fit_transform(x_daily))
x_weekly = torch.from_numpy(scale.fit_transform(x_weekly))
y = torch.from_numpy(scale.fit_transform(y))
# Divide your data into train set & test set
train_x_size = int(x.shape[0] * .67)
train_x = x[: train_x_size, :] # (ns_tr=num of train samples, ts)
train_x_daily = x_daily[: train_x_size, :]
train_x_weekly = x_weekly[: train_x_size, :]
train_y = y[: train_x_size, :] # (ns_tr, 1)
test_x = x[train_x_size:, :] # (ns_te = num of test samples, ts) = (683, ts)
test_x_daily = x_daily[train_x_size:, :]
test_x_weekly = x_weekly[train_x_size:, :]
test_x = test_x[:test_x.shape[0] - 11, :] # 11 is subtracted to make ns_te compatible with bs
test_x_daily = test_x_daily[:test_x_daily.shape[0] - 11, :]
test_x_weekly = test_x_weekly[:test_x_weekly.shape[0] - 11, :]
test_y = y[train_x_size:, :]
test_y = test_y[:test_y.shape[0] - 11, :]
# Divide it into batches
train_x = train_x.view(int(train_x.shape[0] / batch_size), batch_size, time_step) # (nb=num of batches, bs, rts)
train_x_daily = train_x_daily.view(int(train_x_daily.shape[0] / batch_size), batch_size, train_x_daily.shape[1]) # (nb, bs, dts)
train_x_weekly = train_x_weekly.view(int(train_x_weekly.shape[0] / batch_size), batch_size, train_x_weekly.shape[1]) # (nb, bs, rws)
train_y = train_y.view(int(train_y.shape[0] / batch_size), batch_size, 1)
test_x = test_x.view(int(test_x.shape[0] / batch_size), batch_size, time_step)
test_x_daily = test_x_daily.view(int(test_x_daily.shape[0] / batch_size), batch_size, test_x_daily.shape[1])
test_x_weekly = test_x_weekly.view(int(test_x_weekly.shape[0] / batch_size), batch_size, test_x_weekly.shape[1])
test_y = test_y.view(int(test_y.shape[0] / batch_size), batch_size, 1)
# load data for external_features and side_features
train_feat, test_feat = load_data_regions(batch_size, target_cat, target_region, target_city)
train_feat_ext, test_feat_ext = load_data_regions_external(batch_size, nxfeature, target_region, target_city)
train_crime_side, test_crime_side = load_data_sides_crime(batch_size, target_cat, target_region, target_city)
# Model and optimizer
model = AIST(ncfeature, nxfeature, gat_out, gat_att, slstm_nhid, slstm_att, slstm_nlayer, batch_size,
recent_time_step, target_city, target_region, target_cat)
n = sum(p.numel() for p in model.parameters() if p.requires_grad)
lr = 0.001
weight_decay = 5e-4
optimizer = optim.Adam(model.parameters(), lr=lr)
# criterion = nn.MSELoss()
criterion = nn.L1Loss()
epochs = 300
best = epochs + 1
best_epoch = 0
t_total = time.time()
loss_values = []
bad_counter = 0
patience = 100
train_batch = train_x.shape[0]
test_batch = test_x.shape[0]
for epoch in range(epochs):
i = 0
loss_values_batch = []
for i in range(train_batch):
t = time.time()
x_crime = Variable(train_x[i]).float()
x_crime_daily = Variable(train_x_daily[i]).float()
x_crime_weekly = Variable(train_x_weekly[i]).float()
y = Variable(train_y[i]).float()
model.train()
optimizer.zero_grad()
output, attn = model(x_crime, x_crime_daily, x_crime_weekly, train_feat[i], train_feat_ext[i], train_crime_side[i])
y = y.view(-1, 1)
loss_train = criterion(output, y)
loss_train.backward()
optimizer.step()
print('Epoch: {:04d}'.format(epoch*train_batch + i + 1),
'loss_train: {:.4f}'.format(loss_train.data.item()),
'time: {:.4f}s'.format(time.time() - t))
loss_values.append(loss_train)
torch.save(model.state_dict(), '{}.pkl'.format(epoch*train_batch + i + 1))
if loss_values[-1] < best:
best = loss_values[-1]
best_epoch = epoch*train_batch + i + 1
bad_counter = 0
else:
bad_counter += 1
if bad_counter == patience:
break
files = glob.glob('*.pkl')
for file in files:
epoch_nb = int(file.split('.')[0])
if epoch_nb < best_epoch:
os.remove(file)
files = glob.glob('*.pkl')
for file in files:
epoch_nb = int(file.split('.')[0])
if epoch_nb > best_epoch:
os.remove(file)
if epoch*train_batch + i + 1 >= 800:
break
print("Optimization Finished!")
print("Total time elapsed: {:.4f}s".format(time.time() - t_total))
# best_epoch = -1
print('Loading {}th epoch'.format(best_epoch))
model.load_state_dict(torch.load('{}.pkl'.format(best_epoch)))
f = open('result/aist.txt','a')
stat_y = []
stat_y_prime = []
def compute_test():
loss = 0
for i in range(test_batch):
model.eval()
x_crime_test = Variable(test_x[i]).float()
x_crime_daily_test = Variable(test_x_daily[i]).float()
x_crime_weekly_test = Variable(test_x_weekly[i]).float()
y_test = Variable(test_y[i]).float()
output_test, list_att = model(x_crime_test, x_crime_daily_test, x_crime_weekly_test, test_feat[i], test_feat_ext[i], test_crime_side[i])
y_test = y_test.view(-1, 1)
y_test = torch.from_numpy(scale.inverse_transform(y_test))
output_test = torch.from_numpy(scale.inverse_transform(output_test.detach()))
stat_y.append(y_test.detach().numpy())
stat_y_prime.append(output_test.numpy())
loss_test = criterion(output_test, y_test)
# for j in range(42):
# print(y_test[j, :].data.item(), output_test[j, :].data.item())
loss += loss_test.data.item()
print("Test set results:",
"loss= {:.4f}".format(loss_test.data.item()))
print(target_region, " ", target_cat, " ", loss/i)
print(target_region, " ", target_cat, " ", loss/i, file=f)
compute_test()