-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
127 lines (99 loc) · 3.21 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""
Utils for Dataset
Extended from ADNet code by Hansen et al.
"""
import random
import torch
import numpy as np
import operator
import os
import logging
def set_seed(seed):
"""
Set the random seed
"""
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
CLASS_LABELS = {
'CHAOST2': {
'pa_all': set(range(1, 5)),
0: set([1, 4]), # upper_abdomen, leaving kidneies as testing classes
1: set([2, 3]), # lower_abdomen
},
}
def get_bbox(fg_mask, inst_mask):
"""
Get the ground truth bounding boxes
"""
fg_bbox = torch.zeros_like(fg_mask, device=fg_mask.device)
bg_bbox = torch.ones_like(fg_mask, device=fg_mask.device)
inst_mask[fg_mask == 0] = 0
area = torch.bincount(inst_mask.view(-1))
cls_id = area[1:].argmax() + 1
cls_ids = np.unique(inst_mask)[1:]
mask_idx = np.where(inst_mask[0] == cls_id)
y_min = mask_idx[0].min()
y_max = mask_idx[0].max()
x_min = mask_idx[1].min()
x_max = mask_idx[1].max()
fg_bbox[0, y_min:y_max + 1, x_min:x_max + 1] = 1
for i in cls_ids:
mask_idx = np.where(inst_mask[0] == i)
y_min = max(mask_idx[0].min(), 0)
y_max = min(mask_idx[0].max(), fg_mask.shape[1] - 1)
x_min = max(mask_idx[1].min(), 0)
x_max = min(mask_idx[1].max(), fg_mask.shape[2] - 1)
bg_bbox[0, y_min:y_max + 1, x_min:x_max + 1] = 0
return fg_bbox, bg_bbox
def t2n(img_t):
"""
torch to numpy regardless of whether tensor is on gpu or memory
"""
if img_t.is_cuda:
return img_t.data.cpu().numpy()
else:
return img_t.data.numpy()
def to01(x_np):
"""
normalize a numpy to 0-1 for visualize
"""
return (x_np - x_np.min()) / (x_np.max() - x_np.min() + 1e-5)
class Scores():
def __init__(self):
self.TP = 0
self.TN = 0
self.FP = 0
self.FN = 0
self.patient_dice = []
self.patient_iou = []
def record(self, preds, label):
assert len(torch.unique(preds)) < 3
tp = torch.sum((label == 1) * (preds == 1))
tn = torch.sum((label == 0) * (preds == 0))
fp = torch.sum((label == 0) * (preds == 1))
fn = torch.sum((label == 1) * (preds == 0))
self.patient_dice.append(2 * tp / (2 * tp + fp + fn))
self.patient_iou.append(tp / (tp + fp + fn))
self.TP += tp
self.TN += tn
self.FP += fp
self.FN += fn
def compute_dice(self):
return 2 * self.TP / (2 * self.TP + self.FP + self.FN)
def compute_iou(self):
return self.TP / (self.TP + self.FP + self.FN)
def set_logger(path):
logger = logging.getLogger()
logger.handlers = []
formatter = logging.Formatter('[%(levelname)] - %(name)s - %(message)s')
logger.setLevel("INFO")
# log to .txt
file_handler = logging.FileHandler(path)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
# log to console
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
return logger