forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DiscoGAN-CelebA.py
executable file
·229 lines (193 loc) · 8.71 KB
/
DiscoGAN-CelebA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: DiscoGAN-CelebA.py
# Author: Yuxin Wu <[email protected]>
import os, sys
import argparse
from six.moves import map, zip
import numpy as np
from tensorpack import *
from tensorpack.utils.viz import *
import tensorpack.tfutils.symbolic_functions as symbf
from tensorpack.tfutils.summary import add_moving_summary
from tensorpack.tfutils.scope_utils import auto_reuse_variable_scope
import tensorflow as tf
from GAN import SeparateGANTrainer, GANModelDesc
"""
1. Download "aligned&cropped" version of celebA to /path/to/img_ailgn_celeba.
2. Put list_attr_celeba.txt into that directory as well.
3. Start training gender transfer:
./DiscoGAN-CelebA.py --data /path/to/img_align_celeba --style-A Male
4. Visualize the gender conversion images in tensorboard.
With TF1.0.1, cuda 8.0, cudnn 5.1.10,
the training on 64x64 images of batch 64 runs 5.4 it/s on Tesla M40.
This is 2.4x as fast as the original PyTorch implementation.
The cause is probably that in the torch implementation,
a backward() computes gradients for ALL parameters, which is not necessary in GAN.
"""
SHAPE = 64
BATCH = 64
NF = 64 # channel size
def BNLReLU(x, name=None):
x = BatchNorm('bn', x)
return LeakyReLU(x, name=name)
class Model(GANModelDesc):
def _get_inputs(self):
return [InputDesc(tf.float32, (None, SHAPE, SHAPE, 3), 'inputA'),
InputDesc(tf.float32, (None, SHAPE, SHAPE, 3), 'inputB')]
@auto_reuse_variable_scope
def generator(self, img):
assert img is not None
with argscope([Conv2D, Deconv2D],
nl=BNLReLU, kernel_shape=4, stride=2), \
argscope(Deconv2D, nl=BNReLU):
l = (LinearWrap(img)
.Conv2D('conv0', NF, nl=LeakyReLU)
.Conv2D('conv1', NF * 2)
.Conv2D('conv2', NF * 4)
.Conv2D('conv3', NF * 8)
.Deconv2D('deconv0', NF * 4)
.Deconv2D('deconv1', NF * 2)
.Deconv2D('deconv2', NF * 1)
.Deconv2D('deconv3', 3, nl=tf.identity)
.tf.sigmoid()())
return l
@auto_reuse_variable_scope
def discriminator(self, img):
with argscope(Conv2D, nl=BNLReLU, kernel_shape=4, stride=2):
l = Conv2D('conv0', img, NF, nl=LeakyReLU)
relu1 = Conv2D('conv1', l, NF * 2)
relu2 = Conv2D('conv2', relu1, NF * 4)
relu3 = Conv2D('conv3', relu2, NF * 8)
logits = FullyConnected('fc', relu3, 1, nl=tf.identity)
return logits, [relu1, relu2, relu3]
def get_feature_match_loss(self, feats_real, feats_fake):
losses = []
for real, fake in zip(feats_real, feats_fake):
loss = tf.reduce_mean(tf.squared_difference(
tf.reduce_mean(real, 0),
tf.reduce_mean(fake, 0)),
name='mse_feat_' + real.op.name)
losses.append(loss)
ret = tf.add_n(losses, name='feature_match_loss')
add_moving_summary(ret)
return ret
def _build_graph(self, inputs):
A, B = inputs
A = tf.transpose(A / 255.0, [0, 3, 1, 2])
B = tf.transpose(B / 255.0, [0, 3, 1, 2])
# use the initializers from torch
with argscope([Conv2D, Deconv2D, FullyConnected],
W_init=tf.contrib.layers.variance_scaling_initializer(factor=0.333, uniform=True),
use_bias=False), \
argscope(BatchNorm, gamma_init=tf.random_uniform_initializer()), \
argscope([Conv2D, Deconv2D, BatchNorm], data_format='NCHW'), \
argscope(LeakyReLU, alpha=0.2):
with tf.variable_scope('gen'):
with tf.variable_scope('B'):
AB = self.generator(A)
with tf.variable_scope('A'):
BA = self.generator(B)
ABA = self.generator(AB)
with tf.variable_scope('B'):
BAB = self.generator(BA)
viz_A_recon = tf.concat([A, AB, ABA], axis=3, name='viz_A_recon')
viz_B_recon = tf.concat([B, BA, BAB], axis=3, name='viz_B_recon')
tf.summary.image('Arecon', tf.transpose(viz_A_recon, [0, 2, 3, 1]), max_outputs=50)
tf.summary.image('Brecon', tf.transpose(viz_B_recon, [0, 2, 3, 1]), max_outputs=50)
with tf.variable_scope('discrim'):
with tf.variable_scope('A'):
A_dis_real, A_feats_real = self.discriminator(A)
A_dis_fake, A_feats_fake = self.discriminator(BA)
with tf.variable_scope('B'):
B_dis_real, B_feats_real = self.discriminator(B)
B_dis_fake, B_feats_fake = self.discriminator(AB)
with tf.name_scope('LossA'):
# reconstruction loss
recon_loss_A = tf.reduce_mean(tf.squared_difference(A, ABA), name='recon_loss')
# gan loss
self.build_losses(A_dis_real, A_dis_fake)
G_loss_A = self.g_loss
D_loss_A = self.d_loss
# feature matching loss
fm_loss_A = self.get_feature_match_loss(A_feats_real, A_feats_fake)
with tf.name_scope('LossB'):
recon_loss_B = tf.reduce_mean(tf.squared_difference(B, BAB), name='recon_loss')
self.build_losses(B_dis_real, B_dis_fake)
G_loss_B = self.g_loss
D_loss_B = self.d_loss
fm_loss_B = self.get_feature_match_loss(B_feats_real, B_feats_fake)
global_step = get_global_step_var()
rate = tf.train.piecewise_constant(global_step, [np.int64(10000)], [0.01, 0.5])
rate = tf.identity(rate, name='rate') # TF issue#8594
g_loss = tf.add_n([
((G_loss_A + G_loss_B) * 0.1 +
(fm_loss_A + fm_loss_B) * 0.9) * (1 - rate),
(recon_loss_A + recon_loss_B) * rate], name='G_loss_total')
d_loss = tf.add_n([D_loss_A, D_loss_B], name='D_loss_total')
self.collect_variables('gen', 'discrim')
# weight decay
wd_g = regularize_cost('gen/.*/W', l2_regularizer(1e-5), name='G_regularize')
wd_d = regularize_cost('discrim/.*/W', l2_regularizer(1e-5), name='D_regularize')
self.g_loss = g_loss + wd_g
self.d_loss = d_loss + wd_d
add_moving_summary(recon_loss_A, recon_loss_B, rate, g_loss, d_loss, wd_g, wd_d)
def _get_optimizer(self):
lr = symbolic_functions.get_scalar_var('learning_rate', 2e-4, summary=True)
return tf.train.AdamOptimizer(lr, beta1=0.5, epsilon=1e-3)
def get_celebA_data(datadir, styleA, styleB=None):
def read_attr(attrfname):
with open(attrfname) as f:
nr_record = int(f.readline())
headers = f.readline().strip().split()
data = []
for line in f:
line = line.strip().split()[1:]
line = list(map(int, line))
assert len(line) == len(headers)
data.append(line)
assert len(data) == nr_record
return headers, np.asarray(data, dtype='int8')
headers, attrs = read_attr(os.path.join(datadir, 'list_attr_celeba.txt'))
idxA = headers.index(styleA)
listA = np.nonzero(attrs[:, idxA] == 1)[0]
if styleB is not None:
idxB = headers.index(styleB)
listB = np.nonzero(attrs[:, idxB] == 1)[0]
else:
listB = np.nonzero(attrs[:, idxA] == -1)[0]
def get_filelist(idxlist):
return [os.path.join(datadir, '{:06d}.jpg'.format(x + 1))
for x in idxlist]
dfA = ImageFromFile(get_filelist(listA), channel=3, shuffle=True)
dfB = ImageFromFile(get_filelist(listB), channel=3, shuffle=True)
df = JoinData([dfA, dfB])
augs = [
imgaug.CenterCrop(160),
imgaug.Resize(64)]
df = AugmentImageComponents(df, augs, (0, 1))
df = BatchData(df, BATCH)
df = PrefetchDataZMQ(df, 1)
return df
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--data', required=True,
help='the img_align_celeba directory. should also contain list_attr_celeba.txt')
parser.add_argument('--style-A', help='style of A', default='Male')
parser.add_argument('--style-B', help='style of B, default to "not A"')
parser.add_argument('--load', help='load model')
args = parser.parse_args()
assert tf.test.is_gpu_available()
logger.auto_set_dir()
data = get_celebA_data(args.data, args.style_A, args.style_B)
config = TrainConfig(
model=Model(),
dataflow=data,
callbacks=[ModelSaver()],
steps_per_epoch=300,
max_epoch=250,
session_init=SaverRestore(args.load) if args.load else None
)
# train 1 D after 2 G
SeparateGANTrainer(config, d_period=3).train()