-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadditive_combinatorics_sheets.tex
249 lines (233 loc) · 15.7 KB
/
additive_combinatorics_sheets.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
\documentclass{article}
% preamble
\def\npart{III}
\def\nyear{2024}
\def\nterm{Lent}
\def\nlecturer{Prof Julia Wolf}
\def\ncourse{Introduction to Additive Combinatorics}
\def\draft{Incomplete}
\input{header}
% and here we go!
\begin{document}
\maketitle
\tableofcontents
\clearpage
\section{Example Sheet 1}
\begin{problem}
Construct $R \subseteq \F_p^n$ by selecting each element $x \in \F_p^n$ to lie in $R$ independently at random with probability $\frac 12$. Show that, with high probability,
$$\sup_{t \ne 0} \abs{\widehat{1_R}(t)} = O\left(\sqrt{\frac{\log(p^n)}{p^n}}\right)$$
\end{problem}
\begin{proof}
We use that if the $X_i$ are independent with probability $1$ then
$$\P\left(\abs{\sum_i X_i} \ge 2\theta\sqrt{\sum_i \norm{X_i}_\infty^2}\right) \le 4\exp(-\theta^2)$$
Here we assume $t \ne 0$ and pick $X_x = \omega^{x \cdot t}(1_R(x) - \frac 12)$. By assumption, the $X_x$ are independent with mean $0$. Hence our inequality applies. We see that $\norm{X_x}_\infty = \frac 12$, $\sqrt{\sum_x \norm{X_x}_\infty^2} = \frac{p^{\frac n2}}2$,
$$\sum_x X_x = \sum_x \omega^{x \cdot t} 1_R(x) = p^n \widehat[1_R](t)$$
Hence the inequality becomes
$$\P(\abs{\widehat{1_R}(t)} \ge \theta p^{-\frac n2}) \le 4\exp(-\theta^2)$$
The union bound gives
$$\P\left(\sup_{t \ne 0}\abs{\widehat{1_R}(t) \ge \theta p^{-\frac n2}}\right) \le 4\exp(-\theta^2) = \frac 4{p^n} \to 0$$
if we take $\theta = \sqrt{2\log(p^n)}$, as wanted.
\end{proof}
\begin{problem}
Let $p > 2$.
\begin{enumerate}
\item Let $M$ be an $n \times n$ symmetric matrix with entries in $\F_p$, and let $b \in \F_p^n$. By squaring the expression on the left, show that
$$\abs{\E_{x \in \F_p^n} \omega^{x^T Mx + c^T x}} \le p^{-\frac{\rank M}2}$$
\item Let $Q = \{x \in \F_p^n \mid x^T x = 0\}$. By expressing the indicator function of $Q$ as a suitable exponential sum, show that
$$\frac{\abs Q}{p^n} = \frac 1p + O(p^{-\frac n2}) \text{ and } \sup_{t \ne 0} \abs{\widehat{1_Q}(t)} = O(p^{-\frac n2})$$
\end{enumerate}
\end{problem}
\begin{proof}~
\begin{enumerate}
\item
\begin{align*}
\abs{\E_{x \in \F_p^n} \omega^{x^T Mx + c^T x}}^2
& = \E_{x, y} \omega^{x^T Mx + c^T x - (y^T My + c^T y)} \\
& = \E_{x, y} \omega^{(x + y)^T M(x - y) + c^T(x - y)} \\
& = \E_{a, b} \omega^{a^T Mb + c^Tb} \\
& = \E_b 1_{b \in \ker M} \omega^{c^Tb} \\
& \le \E_b 1_{b \in \ker M} \\
& = p^{-\rank M}
\end{align*}
\item $1_Q(x) = \E_a \omega^{x^T(aI)x}$, so
\begin{align*}
\widehat{1_Q}(t)
& = \E_{a, x} \omega^{x^T(aI)x + x \cdot t} \\
& = \underbrace{\frac 1p \E_x \omega^{x \cdot t}}_{1_{t = 0}} + \underbrace{\frac 1p \sum_{a \ne 0} \E_x \omega^{x^T (aI) x + x \cdot t}}_\Delta
\end{align*}
By the previous part, $\abs\Delta \le \frac 1p \sum_{a \ne 0} p^{-\frac{\rank(aI)}2} = O(p^{-\frac n2})$. Hence
$$\widehat{1_Q}(t) = \frac 1p 1_{t = 0} + O(p^{-\frac n2})$$
as wanted.
\end{enumerate}
\end{proof}
\begin{problem}
Given $f : \F_p^n \to \C$, define
$$\norm f_{U^2}^4 = \E_{x + y = z + w}f(x)f(y)\overline{f(z)f(w)}$$
where the expectation is taken over $\{(x, y, z, w) \in (\F_p^n)^4 \mid x + y = z + w\}$.
\begin{enumerate}
\item Show that $\norm f_{U^2} = \norm{\hat f}_{\ell^4}$.
\item Let $f_1, f_2, f_3 : \F_p^n \to \C$. Without appealing to the Fourier transform, show that
$$\abs{T_3(f_1, f_2, f_3)} \le \norm{f_1}_{U^2} \norm{f_2}_\infty \norm{f_3}_\infty, \norm{f_1}_\infty \norm{f_2}_{U^2} \norm{f_3}_\infty, \norm{f_1}_\infty \norm{f_2}_\infty \norm{f_3}_{U^2}$$
\end{enumerate}
\end{problem}
\begin{proof}~
\begin{enumerate}
\item
\begin{align*}
\norm{\hat f}_4^4
& = \norm{\hat f^2}_2^2 = \norm{\widehat{f \ast f}}_2^2 = \norm{f \ast f}_2^2 \text{ by Parseval} \\
& = \E_a (f \ast f)(a) \overline{(f \ast f)(a)} \\
& = \E_{a, x, y, z, w} f(x)f(y)1_{x + y = a} \overline{f(z)f(w)1_{z + w = a}} \\
& = \E_{x + y = z + w} f(x)f(y)\overline{f(z)f(w)}
\end{align*}
where in the last equality we check that the number of factors of $\abs G$ is the same on both sides.
\newpage
\item The trick to make $\norm{f_i}_{U^2}$ appear here is to use Cauchy-Schwarz twice to each time duplicate the number of appearances of $f_i$ in the expression. For this to work, we need one variable to not appear as an argument of $f_i$. A neat way to do this is to write 3APs in the form $2a - b, a - c, b - 2c$, with reason $a - b + c$. For simplicity, assume $\norm{f_1}_\infty = 1$. We get
\begin{align*}
\abs{T_3(f_1, f_2, f_3)}^2
& = \abs{\E_{a, b, c} f_1(2a - b) f_2(a - c) f_3(b - 2c)}^2 \\
& = \abs{\E_{a, b} f_1(2a - b) \E_c f_2(a - c) f_3(b - 2c)}^2 \\
& \le \underbrace{\left(\E_{a, b} \abs{f_1(2a - b)}^2\right)}_{\le \norm{f_1}_\infty^2} \E_{a, b} \abs{\E_c f_2(a - c) f_3(b - 2c)}^2 \\
& \le \E_{a, b} \abs{\E_c f_2(a - c) f_3(b - 2c)}^2 \\
& = \E_{c, c'} \left(\E_a f_2(a - c) \overline{f_2(a - c')}\right) \E_b f_3(b - 2c) \overline{f_3(b - 2c')}
\end{align*}
Hence
\begin{align*}
\abs{T_3(f_1, f_2, f_3)}^4
\le & \left(\E_{c, c'} \abs{\E_a f_2(a - c) \overline{f_2(a - c')}}^2\right) \\
& \left(\E_{c, c'} \abs{\E_b f_3(b - 2c) \overline{f_3(b - 2c')}}^2\right) \\
= & \left(\E_{a, a', c, c'} f_2(a - c) \overline{f_2(a - c') f_2(a' - c)} f_2(a' - c')\right) \\
& \left(\E_{b, b', c, c'} f_3(b - 2c) \overline{f_3(b - 2c') f_3(b' - 2c)} f_3(b' - 2c')\right) \\
= & \norm{f_2}_{U^2}^4 \norm{f_3}_{U^2}^4
\end{align*}
So we've proved $\abs{T_3(f_1, f_2, f_3)} \le \norm{f_1}_\infty \norm{f_2}_{U^2} \norm{f_3}_{U^2}$. Since $T_3(f_1, f_2, f_3) = T_3(f_3, f_2, f_1)$, we also get $\abs{T_3(f_1, f_2, f_3)} \le \norm{f_1}_{U^2} \norm{f_2}_{U^2} \norm{f_3}_\infty$ (and the third inequality $\abs{T_3(f_1, f_2, f_3)} \le \norm{f_1}_{U^2} \norm{f_2}_\infty \norm{f_3}_{U^2}$ can be obtained by an argument similar to the one above). Those inequalities are stronger than the ones we were after as $\norm f_{U^2} \le \norm f_\infty$ in general (by the triangle inequality).
\end{enumerate}
\end{proof}
\begin{problem}
Let $A = \{x \in \F_2^n \mid \abs x \ge \frac n2 + \frac{\sqrt n}2$ where $\abs x$ denotes the number of $1$s in $x$ and $n$ is to be thought of as large $n$.
\begin{enumerate}
\item Show that $A$ has size at least $\frac{2^n}8$.
\item Let $V$ be any subspace of $\F_2^n$ of codimension $< \sqrt n$. Show that $A + A$ does not contain any coset of $V$.
\end{enumerate}
\end{problem}
\begin{proof}~
\begin{enumerate}
\item $\abs A \ge \frac{2^n}8$ is the same as saying that $\P(\sum_i X_i \ge \frac n2 + \frac{\sqrt n}2) \ge \frac 14$ where the $X_i$ are iid Bernoulli random variables with probability $\frac 12$. But $\Var X_i = \frac 14$, so the Central Limit Theorem tells us that
$$\sqrt n\left(\E_{i = 1}^n - \frac 12\right) \overset d\to N\left(0, \frac 14\right)$$
In particular,
$$\P\left(\sum_i X_i \ge \frac n2 + \frac{\sqrt n}2\right) \to \Phi\left(\frac 12\right) = 0.15 > \frac 18$$
\item Note that if $x, y \in A$ then
$$\abs{x + y} = \abs{x \union y} - \abs{x \inter y} \in \left[\frac n2 + \frac{\sqrt n}2, n\right] - \left[\sqrt n, \frac n2 + \frac{\sqrt n}2\right] = [0, n - \sqrt n]$$
Hence $A + A \subseteq \{x \in \F_2^n \mid \abs x \le n - \sqrt n\}$. But now we claim that if $B$ is a coset of a subspace $V$ of dimension $k$, then $\abs x \ge k$ for some $x \in B$. Let's prove it by induction on $k$:
\begin{itemize}
\item For $k = 0$, it's clear.
\item For $k + 1$, pick $v \in V$ such that $v \ne 0$, say $v_i \ne 0$. Then $B_i^+ = \{x \in B \mid x_i = 1\}$ and $v + B_i^+ = \{x \in B \mid x_i = 0\}$ partition $B$. Hence $\abs{B_i^+} = \frac{\abs B}2$ and $B_i^- = e_i + B_i^+$ (where $e_i$ is the $i$-th basis vector) is a coset of a subspace of $V$ of codimension $1$. Find by induction hypothesis $x \in B_i^-$ such that $\abs x \ge k$. Then $x + e_i \in B_i^+$ and $\abs{x + e_i} \ge k + 1$, as wanted.
\end{itemize}
\end{enumerate}
\end{proof}
\begin{problem}
Let $A \subseteq \F_p^n$ be of size $\abs A \le n$. Show that there exists $t \ne 0$ such that $\abs{\widehat{1_A}(t)} = \frac{\abs A}{p^n}$. Formulate an analogous result for the group $\F_p$ with $p$ a prime.
\end{problem}
\begin{proof}
Consider the map
\begin{align*}
\phi : \widehat{\F_p^n} & \to A \to \F_p \\
t & \mapsto x \mapsto x \cdot t
\end{align*}
and write $\Delta = \{(x, \dots, x) : A \to \F_p^n \mid x \in A\}$ the diagonal. $\phi$ is linear. Consider the subspace $\phi^{-1}\Delta$. If it is trivial, then $\phi$ is injective and
$$n = \dim \widehat{\F_p^n} = \rank \phi \le \codim \Delta < \abs A$$
Hence there is some $t \ne 0$ such that $\phi(t) \in \Delta$, namely $x \cdot t = c$ for all $x \in A$ and some $c \in \F_p$. Then
$$\abs{\widehat{1_A}(t)} = \frac 1{p^n} \abs{\sum_{x \in A} \omega^{x \cdot t}} = \frac 1{p^n} \abs{\sum_{x \in A} \omega^c} = \frac{\abs A}{p^n}$$
An analogous statement for $\F_p$ is that if $A \subseteq \F_p$ is of density $\alpha$ and $\abs A < \frac{\log p}{\log 2\pi + \frac 12\log \eps^{-1}}$ then there exists $t \ne 0$ such that $\abs{\widehat{1_A}(t)} \ge (1 - \eps)\alpha$.
\begin{proof}
First note that if $z \in \C$ is such that $\abs{z - 1} \le \sqrt\eps$ then $\Re z \ge 1 - \eps$ (draw a picture in the complex plane). Second, observe that
$$\abs{B(A, \sqrt\eps)} \ge p \left(\frac{\sqrt\eps}{2\pi}\right)^{\abs A} > 1$$
by a theorem in the lectures and by assumption. Hence $B(A, \sqrt\eps)$ contains some $t \ne 0$. For that $t$ and all $x \in A$, we have $\abs{\omega^{xt} - 1} \le \sqrt\eps$. Therefore
$$\abs{\widehat{1_A}(t)} = \frac 1p \abs{\sum_{x \in A} \omega^{xt}} \ge \frac 1p \sum_{x \in A} \Re \omega^{xt} \ge (1 - \eps)\alpha$$
\end{proof}
\end{proof}
\begin{problem}
Let $A \subseteq \F_p$ with $p$ a prime. Show that the number of $3$-term arithmetic progressions in $A$ plus the number of $3$-term arithmetic progressions in $A^c$ depends only on the cardinality of A. Is the same true for $4$-term arithmetic progressions?
\end{problem}
\begin{proof}
This works in a general group $G$ whose elements all have odd order. First observe a few things: $(2 \cdot A)^c = 2 \cdot A^c, \widehat{1_A} + \widehat{1_{A^c}} = \hat 1 = 1_0, \widehat{1_{2 \cdot A}} + \widehat{1_{2 \cdot A^c}} = \hat 1 = 1_0$. Hence we calculate that
\begin{align*}
\frac{\#\{\text{3APs in }A\} + \#\{\text{3APs in }A^c\}}{\abs G^2}
= & T_3(1_A, 1_A, 1_A) + T_3(1_{A^c}, 1_{A^c}, 1_{A^c}) \\
= & \inn{1_{2 \cdot A}}{1_A \ast 1_A} + \inn{1_{2 \cdot A^c}}{1_{A^c} \ast 1_{A^c}} \\
= & \inn{\widehat{1_{2 \cdot A}}}{\widehat{1_A}^2} + \inn{\widehat{1_{2 \cdot A^c}}}{\widehat{1_{A^c}}^2} \\
= & \sum_t \widehat{1_{2 \cdot A}}(t)\widehat{1_A}(t)^2 + \widehat{1_{2 \cdot A^c}}(t)\widehat{1_{A^c}}(t) \\
= & \alpha^3 + (1 - \alpha)^3 \\
& + \sum_{t \ne 0} \widehat{1_{2 \cdot A}}(t)\widehat{1_A}^2(t) + (-\widehat{1_{2 \cdot A}}(t))(-\widehat{1_A}(t))^2 \\
= & 1 - 3\alpha + 3\alpha^2
\end{align*}
Namely,
$$\#\{\text{3APs in }A\} + \#\{\text{3APs in }A^c\} = \abs G^2 - 3\abs A\abs G + 3\abs A^2$$
The same is not true of 4APs since $\{0, 1, 2, 3\}, \{0, 1, 3, 4\} \subseteq \F_7$ have the same size but not the same number of 4APs in them and their complement.
\end{proof}
\begin{problem}
Let $p$ be a prime and let $L \le \frac p2 - 1$ be even. Given $x \in \F_p$, denote by $\abs x$ the minimum distance of $0$ from a member of the residue class of $x$ module $p$.
\begin{enumerate}
\item Let $J = [-\frac L2, \frac L2] \subseteq \F_p$. By summing a geometric series, show that, for all $t \in \widehat{\F_p}$,
$$\abs{\widehat{1_J}(t)} \le \min\left(\frac{L + 1}p, \frac 1{2\abs t}\right)$$
\item Let $A \subseteq \F_p$ be a set of density $\alpha > 0$ such that $A \inter [-L, L] = \emptyset$. Show that there exists $t \ne 0$ with $\abs t \le \sqrt{\frac p2}\frac p{L + 1}$ such that $\abs{\widehat{1_A}(t)} \ge \alpha\frac{L + 1}{2p}$.
\end{enumerate}
\end{problem}
\begin{proof}~
\begin{enumerate}
\item If $t = 0$, then $\widehat{1_J}(t) = \frac{\abs J}p = \frac{L + 1}p$. If $t \ne 0$, then
$$\widehat{1_J}(t) = \E_x 1_J(x) \omega^{xt} = \E_{x = -\frac L2}^{\frac L2} \omega^{xt} = \frac{\omega^{(L + 1)\frac t2} - \omega^{-(L + 1)\frac t2}}{p(\omega^{\frac t2} - \omega^{-\frac t2})}$$
Noting that, for all $x \in [-\pi, \pi]$, we have $\abs{e^{ix} - 1} \ge \frac{2\abs x}\pi$,
$$\abs{\widehat{1_J}(t)} \le \frac 2p \abs{\omega^t - 1}^{-1} \le \frac 2p \left(\frac 2\pi \frac{2\pi t}p\right)^{-1} = \frac 1{2\abs t}$$
\item We can turn the $A \inter [-L, L] = \emptyset$ condition into $\inn{1_A}{1_J \ast 1_J} = 0$. Hence
$$0 = \inn{1_A}{1_J \ast 1_J} = \langle\widehat{1_A}, \widehat{1_J}^2\rangle = \alpha\left(\frac{L + 1}p\right)^2 + \underbrace{\sum_{t \ne 0} \widehat{1_A}(t)\widehat{1_J}(t)^2}_\Delta$$
We calculate
\begin{align*}
\abs\Delta
& \le \sum_{t \ne 0, \abs t \le C} \abs{\widehat{1_A}(t)}\abs{\widehat{1_J}(t)}^2 + \sum_{\abs t > C} \abs{\widehat{1_A}(t)}\abs{\widehat{1_J}(t)}^2 \\
& \le \sup_{t \ne 0, \abs t \le C} \abs{\widehat{1_A}(t)} \norm{\widehat{1_J}}_2^2 + \frac 1{4C^2}\sum_{\abs t > C} \abs{\widehat{1_A}(t)} \\
& \le \frac{L + 1}p \sup_{t \ne 0, \abs t \le C} \abs{\widehat{1_A}(t)} + \frac{p\alpha}{4C^2} \\
& = \frac{L + 1}p \left(\sup_{t \ne 0, \abs t \le C} \abs{\widehat{1_A}(t)} + \alpha\frac{L + 1}{2p}\right)
\end{align*}
Hence
$$\sup_{t \ne 0, \abs t \le C} \abs{\widehat{1_A}(t)} \ge \alpha\frac{L + 1}{2p}$$
as wanted.
\end{enumerate}
\end{proof}
\begin{problem}
Combine Lemmas 1.21 and 1.23 from lectures to give a proof of (Roth’s) Theorem 1.20. That is, show that any subset $A \subseteq [N]$ containing no non-trivial 3-term arithmetic progressions has size $O(N / \log\log N)$.
\end{problem}
\begin{proof}
TODO
\end{proof}
\begin{problem}
In this exercise you will construct (Behrend’s) Example 1.24.
\begin{enumerate}
\item Consider the $d$-dimensional integer grid $[m]^d$. Show that there exists at least one value of $r \in [dm^2]$ such that $S_r = \{x \in [m]^d \mid x_1^2 + \dots + x_d^2 = r\}$ has size at least $m^{d - 2}/d$.
\item Construct a map $\phi : [m]^d \to [N]$ for some suitable $N$ such that if $S \subseteq [m]^d$ contains no non-trivial 3-term arithmetic progressions, then neither does $\phi(S)$.
\item Deduce that there exists a set $A \subseteq [N]$ of size at least $\exp(-c\sqrt{\log N})N$, for some constant $c > 0$, containing no non-trivial 3-term arithmetic progressions.
\end{enumerate}
\end{problem}
\begin{proof}~
\begin{enumerate}
\item Every $x \in [m]^d$ lies in $S_r$ for some $r \in [dm^2]$ (namely $r = x_1^2 + \dots + x_d^2)$. Hence by pigeonhole there's some $r$ such that $\abs{S_r} \ge m^d/(dm^2)$.
\item The map
\begin{align*}
\phi : [m]^d & \to [(2m - 1)^d] \\
x & \mapsto \sum_{i = 0}^{d - 1} (2m - 1)^i x_i
\end{align*}
is such that if $\phi(a) + \phi(b) = 2\phi(c)$ then $a + b = 2c$ since the addition of $2m - 1$-ary numbers whose digits are all $\le m - 1$ does not have carries.
\item The density of $\phi(S_r)$ is
$$\frac{m^{d - 2}/d}{(2m - 1)^d} \ge \frac{m^{d - 2}/d}{(2m)^d} = \frac 1{m^2 2^d d} = \frac 1{N^{\frac 1d} 2^{d - 1} d}$$
Taking logs, we find
$$d - 1 + \log d - \frac{\log N}d \approx 2\sqrt{\log N}$$
if we pick $d = \sqrt{\log N}$. Hence we have found a set of density $\approx \exp(-2\sqrt{\log N})$
\end{enumerate}
\end{proof}
\begin{problem}
Show that for all $\alpha > 0$, there exists a constant $c = c(\alpha)$ such that for every $N$ and every subset $A \subseteq [N]$ of density at least $\alpha$, the number of arithmetic progressions in $A$ is at least $c(\alpha)N^2$.
\end{problem}
\begin{proof}
TODO
\end{proof}
\end{document}