-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadditive_combinatorics.tex
1004 lines (864 loc) · 60.7 KB
/
additive_combinatorics.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{article}
% preamble
\def\npart{III}
\def\nyear{2024}
\def\nterm{Lent}
\def\nlecturer{Prof Julia Wolf}
\def\ncourse{Introduction to Additive Combinatorics}
\def\draft{Incomplete}
\input{header}
% and here we go!
\begin{document}
\maketitle
\tableofcontents
\clearpage
\section{Fourier-analytic techniques}
\newlec
Let $G = \F_p^n$ where $p$ is a small fixed prime and $n$ is large.
\begin{notation}
Given a finite set $B$ and any function $f : B \to \C$, write
$$\E_{x \in B} f(x) = \frac 1{\abs B} \sum_{x \in B} f(x)$$
Write $\omega = e^{\frac{\tau i}p}$. Note $\sum_{a \in \F_p} \omega^a = 0$.
\end{notation}
\begin{dfn}
Given $f : \F_p^n \to \C$, define its {\bf Fourier transform} $\hat f : \F_p^n \to \C$ by
$$\hat f(t) = \E_{x \in \F_p^n} f(x) \omega^{x \cdot t}$$
\end{dfn}
It is easy to verify the {\bf inversion formula}
$$f(x) = \sum_{t \in \F_p^n} \hat f(t)\omega^{-x \cdot t}$$
Indeed,
\begin{align*}
\sum_{t \in \F_p^n} \hat f(t) \omega^{-x \cdot t}
& = \sum_{t \in \F_p^n} \left(\E_y f(y)\omega^{y \cdot t}\right) \omega^{-x \cdot t} \\
& = \E_y f(y) \sum_t \omega^{(y - x) \cdot t} \\
& = \E_y f(y) 1_{y = x} p^n \\
& = f(x)
\end{align*}
\begin{notation}
Given a set $A$ of a finite group $G$, write
\begin{itemize}
\item $1_A$ the {\it characteristic function} of $A$, ie
$$1_A(x) = \begin{cases}
1 & \text{ if } x \in A \\
0 & \text{ if } x \nin A
\end{cases}$$
\item $\mu_A$ the {\it characteristic measure} of $A$, ie
$$\mu_A = \alpha^{-1} 1_A$$
where $\alpha = \frac{\abs A}{\abs G}$.
\item $f_A$ the {\it balanced function} of $A$, ie
$$f_A(x) = 1_A(x) - \alpha$$
\end{itemize}
\end{notation}
Note $\E_x f_A(x) = 0, \E_x \mu_A(x) = 1, \widehat{1_A}(0) = \E_x 1_A(x) = \alpha$. Writing $-A = \{-a | a \in A\}$, we have
\begin{align*}
\widehat{1_{-A}}(t)
& = \E_x 1_{-A}(x) \omega^{x \cdot t} \\
& = \E_x 1_A(-x) \omega^{x \cdot t} \\
& = \E_x 1_A(x) \omega^{-x \cdot t} \\
& = \overline{\widehat{1_A}(t)}
\end{align*}
\begin{eg}\label{ex:dft-subspace}
Let $V \le \F_p^n$. Then
$$\widehat{1_V}(t) = \E_x 1_V(x) \omega^{x \cdot t} = \frac{\abs V}{\abs G} 1_{V^\perp}(t)$$
So
$$\widehat{\mu_V}(t) = 1_{V^\perp}(t)$$
\end{eg}
\begin{eg}\label{ex:dft-random-set}
Let $R \subseteq \F_p^n$ be such that each $x$ is included with probability $\frac 12$ independently. Then with high probability
$$\sup_{t \ne 0} \abs{\widehat{1_R}(t)} = O\left(\sqrt{\frac{\log(p^n)}{p^n}}\right)$$
This is on Example Sheet 1 using a {\bf Chernoff-type bound}: Given $\C$-valued independent random variables $X_1, \dots, X_n$ with mean $0$ and $\theta \ge 0$, we have
$$\P\left(\abs{\sum_i X_i} \ge \theta\sqrt{\sum_i \norm{X_i}^2_\infty}\right) \le 4\exp\left(-\frac{\theta^2}4\right)$$
\end{eg}
\begin{eg}
Let $Q = \{x \in \F_p^n \mid x \cdot x = 0\}$. Then $\abs Q = \left(\frac 1p + O(p^{-n/2})\right)p^n$ and $\sup_{t \ne 0} \abs{\widehat{1_Q}(t)} = O(p^{-\frac n2})$. See Example Sheet 1.
\end{eg}
\begin{notation}
Given $f, g : \F_p^n \to \C$, write
\begin{align*}
\inn f g & = \E_x f(x) \overline{g(x)} \\
\inn{\hat f}{\hat g} & = \sum_t \hat f(t) \overline{\hat g(t)}
\end{align*}
Consequently,
\begin{align*}
\norm f_2^2 & = \E_x \abs{f(x)}^2 \\
\norm{\hat f}_2^2 & = \sum_t \abs{\hat f(t)}^2
\end{align*}
\end{notation}
\begin{lem}\label{lem:plancherel-parseval}
For all $f, g : \F_p^n \to \C$,
\begin{align*}
\inn f g & = \inn{\hat f}{\hat g} & \text{ (Plancherel)} \\
\norm f_2 & = \norm{\hat f}_2 & \text{ (Parseval)}
\end{align*}
\end{lem}
\begin{proof}
Exercise.
\end{proof}
\begin{dfn}\label{def:large-spec}
Let $\rho > 0$ and $f : \F_p^n \to \C$. Define the $\rho$-large spectrum of $f$ to be
$$\Spec_\rho(f) = \{t \mid |\hat f(t)| \ge \rho\norm f_1\}$$
\end{dfn}
\begin{eg}
By Example \ref{ex:dft-subspace}, if $V \le \F_p^n$, then
$\Spec_\rho(1_V) = V^\perp$ for all $\rho > 0$.
\end{eg}
\begin{lem}\label{lem:card-large-spec}
For all $\rho > 0$, $\abs{\Spec_\rho(f)} \le \rho^{-2} \frac{\norm f_2^2}{\norm f_1^2}$.
\end{lem}
\begin{proof}
$$\norm f_2^2 = \norm{\hat f}_2^2 \ge \sum_{t \in \Spec_\rho(f)} \abs{\hat f(t)}^2 \ge \abs{\Spec_\rho(f)}(\rho \norm f_1)^2$$
\end{proof}
\newlec
\begin{dfn}\label{def:convolution}
Given $f, g : \F_p^n \to \C$, define their {\bf convolution} $f \ast g : \F_p^n \to \C$ by
$$(f \ast g)(x) = \E_y f(y)g(x - y)$$
\end{dfn}
\begin{eg}\label{ex:convolution-indicators}
Given $A, B \subseteq \F_p^n$,
\begin{align*}
(1_A \ast 1_B)(x)
& = \E_y 1_A(y)1_B(x - y) \\
& = \frac 1{p^n}\abs{A \inter (x - B)} \\
& = \frac{\#\text{ ways to write } x = a + b, a \in A, b \in B}{p^n}
\end{align*}
In particular, the support of $1_A \ast 1_B$ is the {\bf sum set}
$$A + B = \{a + b \mid a \in A, b \in B\}$$
\end{eg}
\begin{lem}\label{lem:dft-convolution}
Given $f, g : \F_p^n \to \C$,
$$\widehat{f \ast g}(t) = \hat f(t) \hat g(t)$$
\end{lem}
\begin{proof}
\begin{align*}
\widehat{f \ast g}(t)
& = \E_x \left(\E_y f(y)g(x - y)\right)\omega^{x \cdot t} \\
& = \E_y f(y) \E_u g(u)\omega^{(u + y) \cdot t} \\
& = \hat f(t) \hat g(t)
\end{align*}
\end{proof}
\begin{eg}
$\norm{\hat f}_4^4 = \E_{x + y = z + w} f(x)f(y)\overline{f(z)f(w)}$. See Example Sheet 1.
\end{eg}
\begin{lem}[Bogolyubov]
If $A \subseteq \F_p^n$ is of density $\alpha > 0$, then there exists a subspace $V$ of codimension at most $2\alpha^{-2}$ such that $V \subseteq (A + A) - (A + A)$.
\end{lem}
\begin{proof}
Observe that $(A + A) - (A + A) = \supp (\underbrace{1_A \ast 1_A \ast 1_{-A} \ast 1_{-A}}_g)$, so we wish to find $V$ such that $g(x) > 0$ for all $x \in V$. Let $K = \Spec_\rho(1_A)$ for some $\rho > 0$ and define $V = \langle K\rangle^\perp$. By Lemma \ref{lem:card-large-spec}, $\codim V \le \abs K \le \rho^{-2}\alpha^{-1}$. We calculate
\begin{align*}
g(x)
& = \sum_{t \in \F_p^n} \widehat{1_A \ast 1_A \ast 1_{-A} \ast 1_{-A}}(t)\omega^{-x \cdot t} \\
& = \sum_{t \in \F_p^n} \abs{\widehat{1_A}(t)}^4 \omega^{-x \cdot t} \\
& = \alpha^4 + \underbrace{\sum_{t \in K \setminus \{0\}} \abs{\widehat{1_A}(t)}^4 \omega^{-x \cdot t}}_{(1)} + \underbrace{\sum_{t \nin K} \abs{\widehat{1_A}(t)}^4 \omega^{-x \cdot t}}_{(2)}
\end{align*}
We now see that
$$(1) = \sum_{t \in K \setminus \{0\}} \abs{\widehat{1_A}(t)}^4 \ge 0$$
and
$$\abs{(2)} \le \sum_{t \nin K} \abs{\widehat{1_A}(t)}^4 \le \sup_{t \nin K} \abs{\widehat{1_A}(t)}^2 \sum_{t \nin K} \abs{\widehat{1_A}(t)}^2 \le (\rho\alpha)^2\norm{1_A}_2^2 = \rho^2\alpha^3$$
by Parseval. Picking $\rho = \sqrt{\frac\alpha 2}$, we thus get $\rho^2\alpha^3 \le \frac{\alpha^4}2$ and $g(x) > 0$ whenever $x \in V$.
\end{proof}
\begin{eg}
The set $A = \{x \in \F_2^n \mid \abs x \ge \frac n2 + \frac{\sqrt n}2\}$ has density at least $\frac 14$ but there is no coset $C$ of any subspace of codimension $\sqrt n$ such that $C \subseteq A + A$. See Example Sheet 1.
\end{eg}
\begin{lem}\label{lem:density-increment}
Let $A \subseteq \F_p^n$ of density $\alpha$ be such that $\Spec_\rho(1_A)$ contains some $t \ne 0$. Then there exist $V \le \F_p^n$ of codimension $1$ and $x \in \F_p^n$ such that
$$\abs{A \inter (x + V)} \ge \alpha\left(1 + \frac\rho 2\right)\abs V$$
\end{lem}
\begin{proof}
Let $t \ne 0$ be such that $\abs{\widehat{1_A}(t)} \ge \rho\alpha$ and let $V = \langle t\rangle^\perp$. For $j = 1, \dots, p$, write
$$v_j + V = \{x \in \F_p^n \mid x \cdot t = j\}$$
the cosets of $V$. Then
\begin{align*}
\widehat{1_A}(t)
& = \widehat{f_A}(t) \\
& = \E_{x \in \F_p^n}(1_A(x)) - \alpha)\omega^{x \cdot t} \\
& = \E_j \omega^j \E_{x \in v_j + V} (1_A(x) - \alpha) \\
& = \E_j a_j \omega^j
\end{align*}
where $a_j = \frac{\abs{A \inter (v_j + V)}}{\abs V} - \alpha$. Since $\sum_j a_j = 0$, we get
$$\rho\alpha \le \abs{\widehat{1_A}(t)} \le \E_j \abs{a_j} = \E_j (\abs{a_j} + a_j)$$
So there is some $j$ such that $\abs{a_j} + a_j \ge \rho\alpha$. In particular, this $a_j$ is positive, so
$$\frac{\abs{A \inter (v_j + V)}}{\abs V} \ge \alpha + \frac{\rho\alpha}2$$
as wanted.
\end{proof}
\newlec
\begin{lem}\label{lem:3AP-estimate}
Let $p \ge 3$ and $A \subseteq \F_p^n$ of density $\alpha > 0$ be such that $\sup_{t \ne 0} \abs{\widehat{1_A}(t)} = o(1)$. Then $A$ contains $(\alpha^3 + o(1))\abs G^2$ three terms arithmetic progressions (aka 3AP).
\end{lem}
\begin{notation}
Given $f, g, h : \F_p^n \to \C$, write
$$T_3(f, g, h) = \E_x f(x) g(x + d) h(x + 2d)$$
Given $A \subseteq \F_p^n$, write $2 \cdot A = \{2a \mid a \in A\}$. This is distinct from $2A = \{a + b \mid a, b \in A\}$.
\end{notation}
\begin{proof}
The number of 3AP (including the trivial ones of the form $a, a, a$) in $A$ is $\abs G^2$ times
\begin{align*}
T_3(1_A, 1_A, 1_A)
& = \E_{x, d} 1_A(x) 1_A(x + d) 1_A(x + 2d) \\
& = \E_{x, y} 1_A(x) 1_A(y) 1_A(2y - x) \\
& = \E_y (1_A \ast 1_A)(2y) 1_A(y) \\
& = \inn{1_A \ast 1_A}{1_{2 \cdot A}} \\
& = \inn{\widehat{1_A}^2}{\widehat{1_{2 \cdot A}}} \\
& = \alpha^3 + \sum_{t \ne 0} \widehat{1_A}(t)^2 \overline{\widehat{1_{2 \cdot A}}(t)} \text{ by Plancherel}
\end{align*}
In absolute value, the error term is at most
$$\sup_{t \ne 0} \abs{\widehat{1_{2 \cdot A}}(t)} \sum_t \abs{\widehat{1_A}(t)}^2 = \alpha \sup_{t \ne 0} \abs{\widehat{1_A}(t)}$$
\end{proof}
\begin{thm}[Meshulam]\label{thm:meshulam}
Let $p \ge 3$ and $A \subseteq \F_p^n$ be a set containing only trivial 3APs. Then
$$\abs A = O\left(\frac{p^n}{\log(p^n)}\right)$$
\end{thm}
\begin{proof}
By assumption, $T_3(1_A, 1_A, 1_A) = \frac\alpha{p^n}$. But, as in Lemma \ref{lem:3AP-estimate},
$$\abs{T_3(1_A, 1_A, 1_A) - \alpha^3} \le \alpha \sup_{t \ne 0} \abs{\widehat{1_A}(t)}$$
Hence, provided that $2\alpha^{-2} \le p^n$, Lemma \ref{lem:density-increment} gives us a subspace $V \le \F_p^n$ of codimension $1$ and $x \in \F_p^n$ such that
$$\abs{A \inter (x + V)} \ge \alpha\left(1 + \frac{\alpha^2}4\right)\abs V$$
We iterate this observation. Let $A_0 = A, V_0 = \F_p^n$. At step $i$, we are given a set $A_i \subseteq V_i$ of density $\alpha_i$ with only trivial 3APs. Provided that $2\alpha_i^{-2} \le p^{\dim V_i}$, find $V_{i + 1} \le V_i$ of codimension $1$ and $x \in V_i$ such that $\abs{A_i \inter (x + V_i)} \ge \left(\alpha_i + \frac{\alpha_i^2}4\right)\abs{V_{i + 1}}$ and set $A_{i + 1} = (A_i - x) \inter V_i$. Note that $\alpha_{i + 1} \ge \alpha_i + \frac{\alpha_i^2}4$ and $A_{i + 1}$ only contains trivial 3APs (because, very importantly, 3AP are {\bf translation-invariant}). \\
Through this iteration, the density of $A$ increases from $\alpha$ to $2\alpha$ in at most $\lceil 4\alpha^{-1}\rceil$ steps, from $2\alpha$ to $4\alpha$ in at most $\lceil 2\alpha^{-1}\rceil$ steps, etc... Since density can't increase past $1$, it takes at most
$$\underbrace{\lceil 4\alpha^{-1}\rceil + \lceil 2\alpha^{-1}\rceil + \dots}_{\lceil \log \alpha^{-1}\rceil \text{ terms}} \le (4\alpha^{-1} + 1) + (2\alpha^{-1} + 1) + \dots \le 8\alpha^{-1} + \log \alpha^{-1} + 1 \le 9\alpha^{-1}$$
steps to reach a point where the condition $2\alpha_i^{-2} \le p^{\dim V_i}$ is not respected anymore. Now either $\alpha \le \sqrt 2 p^{-\frac n4}$ (in which case the inequality is obvious) or $\alpha \ge \sqrt 2 p^{-\frac n4}$ and
$$p^{n - 9\alpha^{-1}} \le p^{\dim V_i} \le 2\alpha_i^{-2} \le 2\alpha^{-2} \le p^{\frac n2}$$
namely $\alpha \le \frac{18}n$, as wanted.
\end{proof}
\newlec
We have proved that if $A \subseteq \F_3^n$ only contains trivial 3APs then $\abs A = O(\frac{3^n}n)$. The largest known set in $\F_3^n$ with only trivial 3APs has size $\ge 2.218^n$ (Tyrrell, 2022). We will return to this later.
From now on, let $G$ be a finite abelian group. $G$ comes equipped with a set of {\bf characters}, ie group homomorphisms $\gamma : G \to \C^\times$. Characters themselves form a group denoted $\hat G$ and called the {\bf Pontryagin dual} (aka {\bf dual group}) of $G$. It turns out that if $G$ is finite abelian then $\hat G \cong G$ (but {\it non-canonically}). For instance,
\begin{itemize}
\item If $G = \F_p^n$, then $\hat G = \{\gamma_t : x \mapsto \omega^{x \cdot t} \mid t \in G\}$
\item If $G = \Z/n\Z$, then $\hat G = \{\gamma_t : x \mapsto \omega^{xt} \mid t \in G\}$
\end{itemize}
The latter is a special case of the former, but again $n$ should thought of as an asymptotic variable.
\begin{dfn}
Given $f : G \to \C$, define its {\bf Fourier transform} $\hat f : \hat G \to \C$ by
$$\hat f(\gamma) = \E_{x \in G} f(x)\gamma(x)$$
\end{dfn}
It is easy to verify that $f(x) = \sum_{\gamma \in \hat G} \hat f(\gamma) \overline{\gamma(x)}$. Similarly, Definitions \ref{def:large-spec}, \ref{def:convolution}, Examples \ref{ex:dft-random-set}, \ref{ex:convolution-indicators} and Lemmas \ref{lem:plancherel-parseval}, \ref{lem:card-large-spec}, \ref{lem:dft-convolution} go through in this more general context.
\begin{eg}
Let $p$ be a prime, $L < p$ be even and $J = [-\frac L2, \frac L2] \subseteq \F_p$. Then for all $t \ne 0$ we have
$$\widehat{1_J}(t) \le \min\left(\frac{L + 1}p, \frac 1{2\abs t}\right)$$
See Example Sheet 1.
\end{eg}
\begin{thm}[Roth]
Let $A \subseteq [N]$ be a set containing only trivial 3APs. Then $\abs A = O(\frac N{\log\log N})$.
\end{thm}
\begin{lem}
Let $A \subseteq [N]$ of density $\alpha > 0$ containing only trivial 3APs and satisfying $N > 50\alpha^{-2}$. Let $p$ be a prime in $[\frac N3, \frac{2N}3]$ and write $A' = A \inter [p] \subseteq \F_p$. Then either
\begin{enumerate}
\item $\sup_{t \ne 0} \abs{\widehat{1_A}(t)} \ge \frac{\alpha^2}{10}$ (where the Fourier coefficients are computed in $\F_p$)
\item or there exists an interval $J$ of length $\ge \frac N3$ such that
$$\abs{A \inter J} \ge \alpha\left(1 + \frac\alpha{400}\right)\abs J$$
\end{enumerate}
\end{lem}
\begin{proof}
If $\abs{A'} \le \alpha\left(1 - \frac\alpha{200}\right)p$, then
$$\abs{A \inter [p + 1, N]} \ge \alpha(N - p) + \frac{\alpha^2p}{200} \ge \alpha\left(1 + \frac\alpha{400}\right)(N - p)$$
and we are in Case 2 with $J = [p + 1, N]$. Let $A'' = A' \inter [\frac p3, \frac{2p}3]$. Note that all 3APs of the form $(x, x + d, x + 2d) \in A' \times A'' \times A''$ are in fact 3APs in $[N]$ (and in particular they are trivial). \\
If $\abs{A' \inter [\frac p3]}$ or $\abs{A' \inter [\frac{2p}3, p]}$ were at least $\frac 25\abs{A'}$, then we would again be in Case 2. We may therefore assume that $\abs{A''} \ge \frac{\abs{A'}}5$. \\
Now, as in Lemma \ref{lem:3AP-estimate} and Theorem \ref{thm:meshulam} with $\alpha' = \frac{\abs{A'}}p, \alpha'' = \frac{\abs{A''}}p$,
$$\frac{\alpha''}p = T_3(1_{A'}, 1_{A''}, 1_{A''}) = \alpha'\alpha''^2 + \sum_{t \ne 0}\widehat{1_{A'}}(t)\widehat{1_{A''}}(t)\overline{\widehat{1_{2 \cdot A'}}(t)}$$
So, as before, $\frac{\alpha'\alpha''}2 \le \alpha''\sup_{t \ne 0} \abs{\widehat{1_{A'}}(t)}$, provided $\frac{\alpha''}p \le \frac{\alpha'\alpha''^2}2$. This holds by assumption since $p \ge \frac N3, N \ge 50\alpha^{-2}, \alpha' \ge \frac{199}{200}\alpha, \alpha'' \ge \frac{\alpha'}5$.
\end{proof}
\newlec
We now want to convert the large Fourier coefficient into a density increment. This is harder now that the number of values of $xt$ grows as $n \to \infty$. Compare this to the finite field case where $x \cdot t$ only take $p$ different values regardless of $n$. If we can't find a single big coefficient, then we might instead be able to find an interval of coefficients whose total contribution is big.
TODO: Insert picture
\begin{lem}\label{lem:partition-progressions-small-diam}
Let $m \in \N$ and $\phi : [m] \to \F_p$ be multiplication by some fixed $t \ne 0$. Given $\eps > 0$, there exists a partition of $[m]$ into progressions $P_i$ of length $\in [\frac{\eps\sqrt m}2, \eps\sqrt m]$ such that $\diam(\phi(P_i)) \le \eps p$.
\end{lem}
\begin{proof}
Let $u = \floor{\sqrt m}$ and consider $0, t, \dots, ut$. By pigeonhole, find $0 \le v < w \le u$ such that $\abs{wt - vt} \le \frac pu$. Set $s = w - v \le u$ so that $\abs{st} \le \frac pu$. Divide $[m]$ into residue classes mod $s$. Each has size at least $\floor{\frac ms} \ge \floor{\frac mu}$ and can be divided into progressions of the form $a, a + s, \dots, a + ds$ with $\frac{\eps u}2 < d \le \eps u$. The diameter of each progression under $\phi$ is $\abs{dst} \le \eps p$.
\end{proof}
\begin{lem}
Let $A \subseteq [N]$ be of density $\alpha > 0$. Let $p$ be a prime in $[\frac N3, \frac{2N}3]$ and write $A' = A \inter [p]$. Suppose there exists $t \ne 0$ such that $\abs{\widehat{1_A}(t)} \ge \frac{\alpha^2}{10}$. Then there exists a progression $P$ of length at least $\alpha^2 \frac{\sqrt N}{500}$ such that
$$\abs{A \inter P} \ge \alpha\left(1 + \frac\alpha{50}\right)\abs P$$
\end{lem}
\begin{proof}
Let $\eps = \frac{\alpha^2}{40\pi}$ and use Lemma \ref{lem:partition-progressions-small-diam} to partition $[p]$ into progressions $P_i$ of length at least $\frac{\eps \sqrt p}2 \ge \frac{\alpha^2}{80\pi}\sqrt{\frac N3} \ge \frac{\alpha^2\sqrt N}{500}$ and $\diam \phi(P_i) \le \eps p$. Fix one $x_i$ inside each $P_i$.
\begin{align*}
\frac{\alpha^2}{10}
& \le \abs{\widehat{f_{A'}}(t)} \\
& = \frac 1p\abs{\sum_i\sum_{x \in P_i} f_{A'}(x)\omega^{xt}} \\
& = \frac 1p\abs{\sum_i\sum_{x \in P_i} f_{A'}(x)\omega^{x_it} + \sum_i\sum_{x \in P_i} f_{A'}(x)(\omega^{xt} - \omega^{x_it})} \\
& \le \frac 1p\sum_i\abs{\sum_{x \in P_i} f_{A'}(x)\omega^{x_it}} + \frac 1p\sum_i\sum_{x \in P_i} \abs{f_{A'}(x)} 2\pi\eps \\
& \le \frac 1p\sum_i\abs{\sum_{x \in P_i} f_{A'}(x)\omega^{x_it}} + \frac{\alpha^2}{20}
\end{align*}
So
$$\sum_i \abs{\sum_{x \in P_i} f_{A'}(x)} \ge \frac{\alpha^2p}{20}$$
Since $f_{A'}$ has mean zero, there exists $i$ such that $\sum_{x \in P_i} f_{A'}(x) \ge \frac{\alpha^2\abs{P_i}}{40}$.
\end{proof}
\begin{proof}[Proof of Roth's theorem]
Put the ingredients together, Similarly to Meshulam. See Example Sheet 1 for details.
\end{proof}
\begin{eg}[Behrend's construction]
There exists a set $A \subseteq [N]$ containing non nontrivial 3APs of size at least $e^{-O(\sqrt{\log n})}$. See Example Sheet 1.
\end{eg}
\begin{dfn}
Let $\Gamma \subseteq \hat G$. The {\bf Bohr set} of {\bf frequencies} $\Gamma$ and width $\rho$ is
$$B(\Gamma, \rho) = \{x \in G \mid \for \gamma \in \Gamma, \abs{\gamma(x) - 1} \le \rho\}$$
$\abs\Gamma$ is the {\bf rank} of the Bohr set.
\end{dfn}
\begin{eg}
When $G = \F_p^n$, $B(\Gamma, \rho) = \langle\Gamma\rangle^\perp$ for all small enough $\rho$ (depending only on $p$, not $n$).
\end{eg}
\begin{lem}
Let $B$ be a Bohr set of rank $d$ and width $\rho$. Then $\abs B \ge \left(\frac\rho{2\pi}\right)^d\abs G$.
\end{lem}
\begin{proof}
See Example Sheet 2.
\end{proof}
\newlec
\begin{lem}[Bogolyubov]
Given $A \subseteq \F_p$ of density $\alpha > 0$, there exists $\Gamma \subseteq \widehat{\F_p}$ of size at most $2\alpha^{-2}$ such that $B(\Gamma, \frac 12) \subseteq (A + A) - (A + A)$.
\end{lem}
\begin{proof}
Recall $(1_A \ast 1_A \ast 1_{-A} \ast 1_{-A})(x) = \sum_{t \in \widehat{\F_p}} \abs{\widehat{1_A}(t)}^4 \omega^{-xt}$. Let $\Gamma = \Spec_{\sqrt{\frac\alpha 2}}(1_A)$ and note that we have $\cos(\frac{2\pi xt}p) > 0$ for all $x \in B(\Gamma, \frac 12)$ and $t \in \Gamma$. Hence
\begin{align*}
\Re \sum_{t \in \widehat{\F_p}} \abs{\widehat{1_A}(t)}^4 \omega^{-xt}
& = \sum_{t \in \Gamma} \abs{\widehat{1_A}(t)}^4 \cos\left(\frac{2\pi xt}p\right) + \sum_{t \notin \Gamma} \abs{\widehat{1_A}(t)}^4 \cos\left(\frac{2\pi xt}p\right) \\
& \ge \alpha^4 - \frac{\alpha^4}2 > 0
\end{align*}
\end{proof}
\clearpage
\section{Combinatorial methods}
For now, let $G$ be an abelian group. Given $A, B \subseteq G$, we defined
$$A \pm B = \{a \pm b \mid a \in A, b \in B\}$$
If $A$ and $B$ are finite and nonempty, then
$$\max(\abs A, \abs B) \le \abs{A \pm B} \le \abs A\abs B$$
Better bounds are available in certain settings.
\begin{eg}
Let $V \le \F_p^n$ be a subspace. Then $V + V$, so $\abs{V + V} = \abs V$. In fact, if $A \subseteq \F_p^n$ is such that $\abs{A + A} = \abs A$, then $A$ is a coset of some subspace.
\end{eg}
\begin{eg}\label{ex:doubling-lt-three-halves}
Let $A \subseteq \F_p^n$ be such that $\abs{A + A} < \frac 32 \abs A$. Then there exists $V \le \F_p^n$ such that $A$ is contained in a coset of $V$ and $\abs V < \frac 32\abs A$. See Example Sheet 2.
\end{eg}
\begin{eg}
Let $A \subseteq \F_p^n$ be a set of linearly independent vectors. Then $\abs{A + A} = \binom{\abs A + 1}2$. This is big doubling, but $\abs A \le n$ is small! \\
Let $A \subseteq \F_p^n$ be a set where each point is taken randomly with probability $p^{-\theta n} = N^{-\theta}$ where $\theta \in ]\frac 12, 1]$. Then with high probability $\abs{A + A} = (1 + o(1))\frac{\abs A^2}2$.
\end{eg}
\begin{dfn}
Given finite sets $A, B \subseteq G$, we define the Ruzsa distance between $A$ and $B$ to be
$$d(A, B) = \log \frac{\abs{A - B}}{\sqrt{\abs A\abs B}}$$
\end{dfn}
$d(A, B)$ is clearly nonnegative and symmetric. However, $d(A, A) \ne 0$ in general.
\begin{lem}[Ruzsa's triangle inequality]\label{lem:ruzsa-triangle}
For $A, B, C \subseteq G$ finite,
$$d(A, C) \le d(A, B) + d(B, C)$$
\end{lem}
\begin{proof}
The inequality reduces to
$$\abs B\abs{A - C} \le \abs{A - B}\abs{B - C}$$
This is true because
\begin{align*}
\phi : B \times (A - C) & \to (A - B) \times (B - C) \\
(b, d) & \mapsto (a_d - b, b - c_d)
\end{align*}
is injective, where for each $d \in A - C$ we have chosen $a_d \in A, c_d \in C$ such that $d = a_d - c_c$.
\end{proof}
\begin{dfn}
Given a finite set $A \subseteq G$, we write $\sigma(A) = \frac{\abs{A + A}}{\abs A}$ the {\bf doubling constant} and $\delta(A) = \frac{\abs{A - A}}{\abs A}$ the {\bf difference constant} of $A$.
\end{dfn}
$d(A, A) = \log \sigma(A)$ and $d(A, -A) = \log \delta(A)$, so Lemma \ref{lem:ruzsa-triangle} for $A, -A, -A$ tells us that $\delta(A) \le \sigma(A)^2$.
\newlec
\begin{notation}
Given $A \subseteq G$ and $\ell, m \in \N$, write $\ell A - m A$ for the set
$$\underbrace{A + \dots + A}_{\ell \text{ times}} - \underbrace{A - \dots - A}_{m \text{ times}}$$
\end{notation}
\begin{thm}[Plünnecke's inequality]
Let $A, B \subseteq G$ be finite such that $\abs{A + B} \le K\abs A$. Then for all $\ell, m$,
$$\abs{\ell B - mB} \le K^{\ell + m}\abs A$$ww
\end{thm}
\begin{idea}
$A$ should be thought of as being approximately a subspace. The assumption then says that $B$ is efficiently contained in (a translate of) $A$ and the conclusion now reads that $B$ must itself have small multiples. This makes sense, since we can use multiples of $A$ (which are not much bigger than $A$) to efficiently contain the multiples of $B$.
\end{idea}
\begin{proof}
WLOG $\abs{A + B} = K\abs A$. Choose $A' \subseteq A$ nonempty such that the ratio $\frac{\abs{A' + B}}{\abs{A'}} = K'$ is minimised. Note $K' \le K$ and $\abs{A'' + B} \ge K'\abs{A''}$ for all $A'' \subseteq A$.
\begin{claim}
For all finite $C \subseteq G$, $\abs{A' + B + C} \le K'\abs{A' + C}$.
\end{claim}
From the claim, we show that $\abs{A' + mB} \le K'^m\abs{A'}$ for all $m$ by induction:
That's true for $m = 0$. For $m + 1$, the claim with $C = mB$ gives
$$\abs{A' + (m + 1)B} = \abs{A' + B + C} \le K'\abs{A' + C} \le K'^{m + 1}\abs{A'}$$
Now, by the triangle inequality,
$$\abs{A'}\abs{\ell B - mB} \le \abs{A' + \ell B}\abs{A' + mB} \le K'^\ell \abs{A'} K'^m \abs{A'}$$
Namely, $\abs{\ell B - mB} \le K'^{\ell + m}\abs{A'} \le K^{\ell + m} \abs A$.
\begin{proof}[Proof of the claim]
Do induction on $C$. For $C = \emptyset$, it's true. For $C' = C \union \{x\}$ with x $\notin C$, observe that
\begin{align*}
A' + B + C'
& = A' + B + C \union A' + B + x \\
& = A' + B + C \union A' + B + x \setminus D + B + x
\end{align*}
where $D = \{a \in A' \mid a + B + x \subseteq A' + B + C\}$. By definition of $K'$, $\abs{D + B} \ge K'\abs D$, so
\begin{align*}
\abs{A' + B + C'}
& \le \abs{A' + B + C} + \abs{A' + B + x \setminus D + B + x} \\
& \le \abs{A' + B + C} + \abs{A' + B} - \abs{D + B} \\
& \le K'\abs{A' + C} + K'\abs{A'} - K'\abs D \\
& = K'(\abs{A' + C} + \abs{A'} - \abs D)
\end{align*}
We now apply the same argument again, writing
$$A' + C' = A' + C \union A' + x \setminus E + x$$
where $E = \{a \in A' \mid a + x \in A' + C\} \subseteq D$. This time, the union is disjoint, so
$$\abs{A '+ C'} = \abs{A' + C} + \abs{A'} - \abs E \ge \abs{A' + C} + \abs A - \abs D$$
Hence $\abs{A' + B + C'} \le K'\abs{A' + C'}$ which proves the claim.
\end{proof}
\end{proof}
We are now in a position to generalise Example \ref{ex:doubling-lt-three-halves}.
\begin{thm}[Freiman-Ruzsa]\label{thm:freiman-ruzsa}
Let $A \subseteq \F_p^n$ be such that $\abs{A + A} \le K\abs A$ for some $K > 0$. Then $A$ is contained in a subspace $H \le \F_p^n$ of size $\abs H \le K^2 p^{K^4} \abs A$.
\end{thm}
\begin{proof}
Write $S = A - A$ and choose $X \subseteq A + S$ maximal such that the translates $x + A$ for $x \in X$ are disjoint. \\
$X$ cannot be too large. Indeed, $\forall x \in X, x + A \subseteq 2A + S$. Hence $\Union_{x \in X} (x + A) \subseteq 2A + S$ and $\abs X\abs A = \abs{\Union_{x \in X} (x + A)} \le \abs{2A + S} \le K^4\abs A$ by Plünnecke, namely $\abs X \le K^4$. \\
Now observe that $A + S \subseteq X + S$. Indeed, if $y \in A + S$, then either $y \in X \subseteq X + S$ (because $0 \in S$) or $y \notin X$, meaning that $x + A$ and $y + A$ are not disjoint ($X$ is maximal), namely $y \in x + A - A \subseteq X + S$. \\
By induction, $\ell A + S \subseteq \ell X + S$ for all $\ell$. Hence, writing
$$H = \langle A\rangle = \Union_\ell (\ell A + S) \subseteq \Union_\ell (\ell X + S) = \langle X\rangle + S$$
the subgroup generated by $A$, we see that $A$ is contained in a subgroup of size
$$\abs H \le \abs{\langle X\rangle}\abs S \le p^{\abs X}K^2\abs A \le K^2p^{K^4}\abs A$$
\end{proof}
\newlec
\begin{eg}
Let $A = H \union R \subseteq \F_p^n$ where $H$ is a subspace of dimension $K \ll d \ll n - k$ and $R$ consists of $K - 1$ linearly independent vectors in $H^\perp$. Then $\abs A = \abs{H \union R} \sim \abs H$ and $\abs{A + A} = \abs{H \union H + R \union R + R} \sim K\abs H \sim K\abs A$ but any subspace $V \le \F_p^n$ containing $A$ must have size $\ge p^{d + (K - 1)} = p^{K - 1} \abs H \sim p^{K - 1}\abs A$ where the constant is exponential in $K$.
\end{eg}
\begin{conj}[Polynomial Freiman-Ruzsa]
Let $A \subseteq \F_p^n$ be such that $\abs{A + A} \le K\abs A$. Then there is a subspace $H \le \F_p^n$ of size at most $C_1(K)\abs A$ and $x \in \F_p^n$ such that $\abs{A \inter (x + H)} \ge \frac{\abs A}{C_2(K)}$ where $C_1(K)$ and $C_2(K)$ are polynomials.
\end{conj}
For $p = 2$, this is now a theorem.
\begin{dfn}
Given an abelian group $G$ and finite sets $A, B \subseteq G$, define {\bf additive quadruples} to be the tuples $(a, a', b, b') \in A^2 \times B^2$ such that $a + b = a' + b'$ and the {\bf additive energy between $A$ and $B$} to be
$$E(A, B) = \frac{\#\{\text{additive quadruples}\}}{\abs A^{\frac 32}\abs B^{\frac 32}}$$
Write $E(A) = E(A, A)$ the {\bf additive energy of $A$}.
\end{dfn}
Observe that, if $G$ is finite, then
\begin{align*}
\abs A^3 E(A)
& = \abs G^3 \E_{x + y = z + w} 1_A(x)1_A(y)1_A(z)1_A(w) \\
& = \abs G^3 \norm{\widehat{1_A}}_4^4
\end{align*}
\begin{eg}
When $H \le \F_p^n$, we have $E(H) = 1$.
\end{eg}
\begin{lem}\label{lem:energy-lower-bound}
Let $G$ be abelian and $A, B \subseteq G$ be finite. Then $E(A, B) \ge \frac{\sqrt{\abs A\abs B}}{\abs{A \pm B}}$.
\end{lem}
\begin{proof}
Write $r(x) = \#\{(a, b) \in A \times B \mid a + b = x\}$ so that
$$\abs A^{\frac 32}\abs B^{\frac 32}E(A, B) = \#\{\text{additive quadruples}\} = \sum_x r(x)^2$$
Observe that $\sum_x r(x) = \abs A\abs B$, therefore
\begin{align*}
\abs A^{\frac 32}\abs B^{\frac 32} E(A, B)
& = \sum_x r(x)^2 \\
& \ge \frac{\sum_x r(x)1_{A + B}(x)}{\sum_x 1_{A + B}(x)^2} \text{ by Cauchy-Schwarz} \\
& = \frac{(\abs A\abs B)^2}{\abs{A + B}}
\end{align*}
and similarly for $A - B$.
\end{proof}
In particular, if $\abs{A + A} \le K\abs A$ then $E(A) \ge \frac 1K$. The mantra is "Small doubling implies big energy". The converse is {\bf not} true.
\begin{eg}
Let $G$ be your favorite family of abelian groups. Then there are constants $\eta, \theta > 0$ such that for all sufficiently large $n$ there exists $A \subseteq G$ with $\abs A = n$ satisfying $E(A) \gg \eta$ and $\abs{A + A} \ge \theta \abs A^2$. See Example Sheet 2.
\end{eg}
If we can't hope for a set to have small doubling when its energy is big, we might at least be able to find a big subset with big energy.
\begin{thm}[Balog-Szemerédi-Gowers]\label{thm:bsg}
Let $G$ be an abelian group and let $A \subseteq G$ be finite such that $E(A) \ge \eta$ for some $\eta > 0$. Then there exists $A' \subseteq A$ of size at least $c(\eta)\abs A$ such that $\abs{A' + A'} \le C(\eta)\abs A$ where $c(\eta)$ and $C(\eta)$ are polynomials in $\eta$.
\end{thm}
We first prove a technical lemma using a method known as "dependent random choice".
\begin{lem}\label{lem:bsg-drc}
Let $A_1, \dots, A_m \subseteq [n]$ and suppose that $\sum_{i, j} \abs{A_i \inter A_j} \ge \delta^2nm^2$. Then there exists $X \subseteq [m]$ of size at least $\frac{\delta^5m}{\sqrt 2}$ such that $\abs{A_i \inter A_j} \ge \frac{\delta^2n}2$ for at least 90\% of the pairs $(i, j) \in X^2$.
\end{lem}
\begin{proof}
Let $x_1, \dots, x_5$ be taken uniformly at random from $[n]$ and let
$$X = \{i \in [m] \mid \forall k, x_k \in A_i\}$$
Observe that $\P(i, j \in X) = \left(\frac{\abs{A_i \inter A_j}}n\right)^5$. Hence
$$\frac{\E \abs X^2}{m^2} = \E_{i, j} \P(i, j \in X) \ge \left(\frac{\E_{i, j} \abs{A_i \inter A_j}}n\right)^5 \ge \delta^{10}$$
Call a pair {\bf bad} if $\abs{A_i \inter A_j} < \frac{\delta^2n}2$. Note that
$$\P(i, j \in X \mid (i, j) \text{ bad}) = \P(x_1 \in A_i \inter A_j \mid (i, j) \text{ bad})^5 \le \frac{\delta^{10}}{2^5}$$
Hence
$$\E[\#\{\text{bad pairs in }X^2\}] \le \frac{\delta^{10}m^2}{2^5}$$
meaning that
$$\frac{\delta^{10}m^2}2 + 16\E[\#\{\text{bad pairs in }X^2\}] \le \E[\abs X^2]$$
We can therefore find $x_1, \dots, x_5$ such that $\frac{\delta^{10}m^2}2 + 16\#\{\text{bad pairs in }X^2\} \le \abs X^2$. This both means that $\abs X \ge \frac{\delta^5m}{\sqrt 2}$ and that
$$\#\{\text{bad pairs in }X^2\} \le \frac{\abs X^2}{16} \le 10\% \abs X^2$$
\end{proof}
\newlec
\begin{proof}[Proof of Balog-Szemerédi-Gowers]
Call $d$ a {\bf popular difference} if we can write $d = x - y$ with $x, y \in A$ in at least $\frac{\eta\abs A}2$ ways, ie if $r_{A - A}(d) \ge \frac{\eta\abs A}2$.
There must be at least $\frac{\eta\abs A}2$ popular differences for, if not,
\begin{align*}
\eta\abs A^3
& \le \sum_d r_{A - A}(d)^2 \\
& = \sum_{d\text{ popular}} r_{A - A}(d)^2 + \sum_{d\text{ unpopular}} r_{A - A}(d)^2 \\
& < \frac{\eta\abs A}2 \abs A^2 + \frac{\eta\abs A}2\sum_d r_{A - A}(d) \\
& = \eta\abs A^3
\end{align*}
Define a graph with vertex set $A$ and with $x \sim y$ if $y - x$ is a popular difference. Since we have at least $\frac{\eta\abs A}2$ popular differences, our graph has at least $\frac{\eta^2\abs A^2}4$ (directed) edges. We have $\E_{x, y \in A} \abs{N(x) \inter N(y)} \ge \frac{\eta^4\abs A}{2^4}$. Indeed,
\begin{align*}
\E_{x, y \in A} \abs{N(x) \inter N(y)}
& = \E_{x, y \in A} \sum_{z \in A} 1_{x \sim z} 1_{y \sim z} \\
& = \sum_{z \in A} \left(\E_{x \in A} 1_{x \sim z}\right)^2 \\
& \ge \frac 1{\abs A} \left(\sum_{z \in A} \E_{x \in A} 1_{x \sim z}\right)^2 \\
& = \frac 1{\abs A} \left(\E_{x \in A} \abs{N(x)}\right)^2 \\
& \ge \frac 1{\abs A} \left(\frac{\eta^2\abs A}4\right)^2 \\
& = \frac{\eta^4\abs A}{2^4}
\end{align*}
We apply Lemma \ref{lem:bsg-drc} with $m = n = \abs A$ and $\delta = \frac{\eta^2}4$ to find a subset $B \subseteq A$ of size $\ge \frac{\eta^{10}\abs A}{2^{11}}$ with the property that $\abs{N(x) \inter N(y)} \ge \frac{\eta^4\abs A}{2^5}$ for at least 90\% of the $x, y \in B$. But then for at least 50\% of the $x \in B$ we have $\abs{N(x) \inter N(y)} \ge \frac{\eta^4\abs A}{2^5}$ for at least 80\% of the $y \in B$ (else $90\% \le \E_{x, y \in B} 1_{(x, y)\text{ good}} < 50\% * 100\% + 50\% * 80\% = 90\%$). Call $A' \subseteq B$ that set of such $x$. On one hand, $\abs{A'} \ge \frac{\abs B}2 \ge \frac{\eta^{10}\abs A}{2^{12}}$. On the other hand, if $x, y \in A'$ then at least 60\% of the $z \in B$, namely at least $\frac{\eta^{10}\abs A}{2^{12}}$ such $z$, are such that
$$\abs{N(x) \inter N(z)}, \abs{N(y) \inter N(z)} \ge \frac{\eta^4\abs A}{2^5}$$
We now prove an upper bound on $\abs{A' - A'}$ by showing that each element can be written as a linear combination of distinct octuples in $A$. For each such $z$, there are at least $\left(\frac{\eta^4\abs A}{2^5}\right)^2$ pairs $(u, v)$ with $u \in N(x) \inter N(z), v \in N(y) \inter N(z)$. For each such pair $(u, v)$, we have $x \sim u \sim z \sim v \sim y$, hence the elements $u - x, z - u, v - z, y - v$ are all popular differences and there are at least $\left(\frac{\eta\abs A}2\right)^4$ octuples $(a_1, \dots, a_8) \in A^8$ such that
$$u - x = a_2 - a_1, z - u = a_4 - a_3, v - z = a_6 - a_5, y - v = a_8 - a_7$$
In other words, there are at least
$$\underbrace{\frac{\eta^{10}\abs A}{2^{12}}}_z
\underbrace{\left(\frac{\eta^4\abs A}{2^5}\right)^2}_{(u, v)}
\underbrace{\left(\frac{\eta\abs A}2\right)^4}_{(a_1, \dots, a_8)} = \frac{\eta^{22}\abs A^7}{2^{26}}$$
octuples $(a_1, \dots, a_8) \in A^8$ such that
$$y - x = (a_8 - a_7) + (a_6 - a_5) + (a_4 - a_3) + (a_2 - a_1)$$
Since distinct $y - x$ give rise to distinct octuples,
$$\frac{\eta^{22}\abs A^7}{2^{26}} \abs{A' - A'} \le \abs A^8$$
namely
$$\abs{A' - A'} \le \frac{2^{26}}{\eta^{22}}\abs A \le \frac{2^{38}}{\eta^{32}}\abs{A'}$$
\end{proof}
\clearpage
\section{Probabilistic tools}
\begin{prop}[Khintchine's inequality]
Let $X_1, \dots, X_n$ be independent random variables taking values $\pm x_i$ with probability $\frac 12$. Then, for all $p \in [2, \infty[$,
$$\norm{\sum_i X_i}_{L^p(\P)} = O\left(\sqrt p\left(\sum_i \norm{X_i}_{L^2(\P)}^2\right)^{\frac 12}\right)$$
\end{prop}
\newlec
\begin{proof}
By nesting of norms, it's enough to prove it when $p = 2k$ for some integer $k$. Write $X = \sum_i X_i$ and WLOG assume that $\sum_i \norm{X_i}_{L^2(\P)}^2 = 1$. By Chernoff,
$$\norm X_{L^{2k}(\P)}^{2k} = \int_0^\infty 2k t^{2k - 1} \P(\abs X \ge t)\ dt \le 8k \underbrace{\int_0^\infty t^{2k - 1} \exp\left(-\frac{t^2}4\right)\ dt}_{I(k)}$$
Let's prove by induction on $k$ that $I(k) \le C^{2k}\frac{(2k)^k}{4k}$ for some constant $C > 0$. Indeed if $k = 1$ then
$$\int_0^\infty t \exp\left(-\frac{t^2}4\right)\ dt = \left. -2\exp\left(-\frac{t^2}4\right)\right|_0^\infty = 2 \le C^2 \frac 24$$
if $C \ge 2$. For $k > 1$,
\begin{align*}
I(k)
& = \int_0^\infty t^{2k - 2} t \exp\left(-\frac{t^2}4\right)\ dt \\
& = \left. t^{2k - 2} (-2)\exp\left(-\frac{t^2}4\right)\right|_0^\infty - \int_0^\infty (2k - 2)t^{2k - 3}(-2)\exp\left(-\frac{t^2}4\right)\ dt \\
& = 4(k - 1)I(k - 1) \\
& \le 4(k - 1)C^{2(k - 1)}\frac{(2(k - 1))^{k - 1}}{4(k - 1)} \\
& \le C^{2k}\frac{(2k)^k}{4k}
\end{align*}
if $C \ge \sqrt 2$.
\end{proof}
\begin{cor}[Rudin's inequality]
Let $\Lambda \subseteq \widehat{\F_2^n}$ be linearly independent and $f : \F_2^n \to \C$ be such that $\hat f$ is supported on $\Lambda$. Then, for all $p \in [2, \infty[$,
$$\norm{\sum_{\gamma \in \Lambda} \hat f(\gamma)\gamma}_{L^p(\F_2^n)} = O\left(\sqrt p \norm f_{L^2(\Lambda)}\right)$$
\end{cor}
\begin{proof}
See Example Sheet 2.
\end{proof}
\begin{cor}[Dual form of Rudin's inequality]\label{cor:dual-rudin}
Let $\Lambda \subseteq \widehat{\F_2^n}$ be linearly independent and let $q \in ]1, 2]$ Then for all $f \in L^q(\F_2^n)$,
$$\norm{\hat f}_{\ell^2(\Lambda)} = O\left(\sqrt{\frac q{q - 1}} \norm f_{L^q(\F_2^n)}\right)$$
\end{cor}
\begin{proof}
Let $f \in L^q(\F_2^n)$ and write $g = \sum_{\gamma \in \Lambda} \hat f(\gamma)\gamma$. Then
$$\hat g(\delta) = \E_x \delta(x) \sum_{\gamma \in \Lambda} \hat f(\gamma) \gamma(x) = \sum_{\gamma \in \Lambda} \hat f(\gamma) \E_x \gamma(x)\delta(x) = 1_\Lambda(\delta) \hat f(\delta)$$
So $\hat g$ is supported on $\Lambda$ and
$$\norm{\hat f}_{\ell^2(\Lambda)}^2 = \sum_{\gamma \in \Lambda} \abs{\hat f(\gamma)}^2 = \sum_{\gamma \in \Lambda} \hat f(\gamma)\overline{\hat g(\gamma)} = \langle\hat f, \hat g\rangle_{\ell_2(\F_2^n)} = \inn f g_{L^2(\F_2^n)}$$
By Hölder,
$$\inn f g_{L^2(\F_2^n)} \le \norm f_{L^q(\F_2^n)}\norm g_{L^p(\F_2^n)}$$
where $\frac 1p + \frac 1q = 1$. By Rudin,
$$\norm g_{L^p(\F_2^n)} = O(\sqrt p \norm{\hat g}_{\ell^2(\Lambda)}) = O\left(\sqrt{\frac q{q - 1}} \norm{\hat f}_{\ell^2(\Lambda)}\right)$$
Putting all of this together, we get the result.
\end{proof}
Recall that, given $A \subseteq \F_2^n$ of density $\alpha > 0$, $\abs{\Spec_\rho(1_A)} \le \rho^{-2}\alpha^{-1}$. This is best possible, as the example of a subspace $H \le \F_2^n$ shows:
$$\abs{\Spec_1(1_H)} = \abs{H^\perp} = \left(\frac{\abs H}{2^n}\right)^{-1}$$
But here $H$ is very structured! And indeed in Bogolyubov we used the bound on the size of the spectrum only to bound the size of the subspace it generated. So maybe the {\it dimension} of the spectrum is what we should be looking at instead of its size.
\begin{thm}[Special case of Chang's lemma]
Let $A \subseteq \F_2^n$ be of density $\alpha > 0$. Then for all $\rho > 0$ there exists a subspace $H \le \F_2^n$ of dimension $O(\rho^{-2}\log\alpha^{-1})$ such that $\Spec_\rho(1_A) \subseteq H$.
\end{thm}
\begin{proof}
Let $\Lambda \subseteq \Spec_\rho(1_A)$ be a maximal linearly independent subset and let $H = \langle\Spec_\rho(1_A)\rangle$. Then $\dim H = \abs\Lambda$. By Corollary \ref{cor:dual-rudin}, if $q \in ]1, 2]$,
$$(\rho\alpha)^2\abs\Lambda \le \sum_{\gamma \in \Lambda} \abs{\widehat{1_A}(\gamma)}^2 = \norm{\widehat{1_A}}_{\ell^2(\Lambda)}^2 = O\left(\frac q{q - 1}\norm{1_A}_{L^q(\F_2^n)}\right) = O\left(\frac q{q - 1} \alpha^{\frac 2q}\right)$$
So $\abs\Lambda = O\left(\frac q{q - 1}\rho^{-2}\alpha^{\frac 2q - 2}\right)$. Choose $q = 1 + \log^{-1} \alpha^{-1}$ to get $\abs\Lambda = O(\rho^{-2}\log\alpha^{-1})$.
\end{proof}
We will prove Chang's lemma in greater generality on Example Sheet 3. The key definition for the generalisation is the following.
\begin{dfn}
Let $G$ be a finite abelian group. We say $S \subseteq G$ is {\bf dissociated} if
$$\sum_{s \in S} \eps_s s = 0 \implies \eps = 0$$
for all $\eps \in \{-1, 0, 1\}^S$.
\end{dfn}
Note that if $G = \F_2^n$ then a set $S \subseteq G$ is dissociated iff it's linearly independent.
\newlec
\begin{thm}[Chang's lemma]
Let $G$ be a finite abelian group and let $A \subseteq G$ be of density $\alpha > 0$. If $\Lambda \subseteq \Spec_\rho(1_A)$ is dissociated, then $\abs\Lambda = O(\rho^{-2}\log\alpha^{-1})$.
\end{thm}
\begin{proof}
See Example Sheet 3.
\end{proof}
We may bootstrap Khintchine's inequality to get the following.
\begin{thm}[Marcinkiewicz-Zygmund inequality]
Let $p \in [2, \infty[$ and $X_1, \dots, X_n \in L^p(\P)$ be independent random variables with $\E \sum_i X_i = 0$. Then
$$\norm{\sum_i X_i}_{L^p(\P)} = O\left(\sqrt p \norm{\sum_i \abs{X_i}^2}_{L^{\frac p2}(\P)}^{\frac 12}\right)$$
\end{thm}
\begin{proof}
We can derive the complex-valued case from the real-valued case by taking real and imaginary parts and apply the triangle inequality. \\
Next assume that the distribution of the $X_i$ is symmetric, ie $\P(X_i = a) = \P(X_i = -a)$ for all $a$. Partition the probability space $\Omega$ into sets $\Omega_1, \dots, \Omega_M$, writing $\P_j$ for the induced probability measure on $\Omega_j$. Do it so that all $X_i$ are symmetric and take at most two values on each $\Omega_j$. Applying Khintchine for each $j \in [M]$,
$$\norm{\sum_i X_i}_{L^p(\P_j)}^p = O\left(p^{\frac p2} \left(\sum_i \norm{X_i}_{L^2(\P_j)}^2\right)^{\frac p2}\right) = O\left(p^{\frac p2} \norm{\sum_i \abs{X_i}^2}_{L^{\frac p2}(\P_j)}^{\frac p2}\right)$$
with the last inequality being Jensen on $x \mapsto x^{\frac p2}$. Summing over all $j \in [M]$ and taking $p$-th roots gives the symmetric case. \\
Now suppose the $X_i$ are arbitrary. Let $Y_1, \dots, Y_n$ be such that $X_i \sim Y_i$ and $X_1, \dots, X_n$, $Y_1, \dots, Y_n$ are independent. Applying the symmetric result to $X_i - Y_i$,
\begin{align*}
\norm{\sum_i (X_i - Y_i)}_{L^p(\P \times \P)}
& = O\left(\sqrt p \norm{\sum_i \abs{X_i - Y_i}^2}_{L^{\frac p2}(\P \times \P)}^{\frac 12}\right) \\
& = O\left(\sqrt p \norm{\sum_i \abs{X_i}^2}_{L^{\frac p2}(\P)}^{\frac 12}\right)
\end{align*}
But also
$$\norm{\sum_i X_i}_{L^p(\P)} = \norm{\sum_i X_i - \E \sum_i Y_i}_{L^p(\P)} \le \norm{\sum_i (X_i - Y_i)}_{L^p(\P \times \P)}$$
by convexity.
\end{proof}
\begin{thm}[Croot-Sisask Almost Periodicity]
Let $G$ be a finite abelian group, let $\eps > 0$ and let $p \in [2, \infty[$. Let $A, B \subseteq G$ be such that $\abs{A + B} \le K\abs A$ and let $f : G \to \C$. Then there exist $b \in B$ and a set $X \subseteq B - b$ such that $\abs X \ge (2K)^{-O(\eps^{-2}p)}\abs B$ and
$$\norm{\tau_x(f \ast \mu_A) - f \ast \mu_A}_{L^p(G)} \le \eps \norm f_{L^p(G)}$$
\end{thm}
\begin{proof}
The main idea is to approximate
$$(f \ast \mu_A)(y) = \E_x \mu_A(x) f(y - x) = \E_{x \in A} f(y - x)$$
by $\frac 1k \sum_{i = 1}^k f(y - z_i)$ with the $z_i$ sampled uniformly at random from $A$ for some $k$ to be chosen. For each $y \in G$, define $Z_i(y) = \tau_{-z_i}(f)(y) - (f \ast \mu_A)(y)$ which are independent with mean zero. So, by Marcinkiewicz-Zygmund,
$$\norm{\sum_i Z_i(y)}_{L^p(\P)}^p = O\left(p^{\frac p2} \norm{\sum_i \abs{Z_i(y)}^2}_{L^{\frac p2}(\P)}^{\frac p2}\right) = O\left(p^{\frac p2} \E_{z_1, \dots, z_k} \abs{\sum_i \abs{Z_i(y)}^2}^{\frac p2}\right)$$
\newlec
By Hölder, picking $q$ such that $\frac 2p + \frac 1q = 1$,
$$\mathrm{RHS} \le \left(\sum_i 1^q\right)^{\frac 1q\frac p2}\left(\sum_i \abs{Z_i(y)}^{2\frac p2}\right)^{\frac 2p\frac p2} = k^{\frac p2 - 1} \sum_i \abs{Z_i(y)}^p$$
So, for each $y \in G$,
$$\norm{\sum_i Z_i(y)}_{L^p(\P)}^p = O\left(p^{\frac p2}k^{\frac p2 - 1} \E_{z_1, \dots, z_k} \sum_i \abs{Z_i(y)}^p\right)$$
Taking expectation over $y \in G$,
$$\E_y \norm{\sum_i Z_i(y)}_{L^p(\P)}^p = O\left(p^{\frac p2}k^{\frac p2 - 1} \E_{z_1, \dots, z_k} \sum_i \norm{Z_i}_{L^p(G)}^p\right)$$
Note that
$$\norm{Z_i}_{L^p(G)} \le \norm{\tau_{-z_i}(f)}_{L^p(G)} + \norm{f \ast \mu_A}_{L^p(G)} \le 2\norm f_{L^p(G)}$$
by Young's convolution inequality ($\norm{f \ast g}_{L^p} \le \norm f_{L^q}\norm g_{L^r}$ if $1 + \frac 1p = \frac 1q + \frac 1r$). It follows that
$$\E_{z_1, \dots, z_k} \E_y \abs{\sum_i Z_i(y)}^p = O\left(p^{\frac p2} k^{\frac p2 - 1} \sum_i 2\norm f_{L^p(G)}^p\right) = O\left((pk \norm f_{L^p(G)}^2)^{\frac p2}\right)$$
Dividing by $k$ on both sides,
$$\E_{z_1, \dots, z_k} \underbrace{\E_y \abs{\E_i (\tau_{-z_i}(f)(y) - (f \ast \mu_A)(y))}^p}_{(*)} = O\left((pk^{-1} \norm f_{L^p(G)}^2)^{\frac p2}\right)$$
Choose $k = O(\eps^{-2}p)$ such that the RHS is at most $(\frac\eps 4 \norm f_{L^p(G)})^p$. Write
$$L = \left\{(z_1, \dots, z_k) \mid (*) \ge \left(\frac\eps 2 \norm f_{L^p(G)}\right)^p\right\}$$
Observe that $\E (*) \le (\frac\eps 4 \norm f_{L^p(G)})^p = 2^{-p}(\frac\eps 2 \norm f_{L^p(G)})^p$. Hence Markov tells us that
$$\frac{\abs{L^c}}{\abs A^k} = \P\left((*) \ge \left(\frac\eps 2 \norm f_{L^p(G)}\right)^p\right) \le 2^{-p} \le 1 - 2^{-k}$$
Hence $\abs L \ge \frac 1{2^k} \abs A^k$. Let $D = \{(b, \dots, b) \mid b \in B\} \subseteq B^k$ the diagonal. Note that $L + D \subseteq (A + B)^k$, whence $\abs{L + D} \le \abs{(A + B)^k} \le K^k\abs A^k \le (2K)^k\abs L$. By Lemma \ref{lem:energy-lower-bound},
$$\#\{\text{additive quadruples between $L$ and $D$}\} \ge \frac{\abs D^2\abs L}{(2K)^k}$$
So there are at least $\frac{\abs D^2}{(2K)^k}$ pairs $(d_1, d_2) \in D \times D$ such that $r_{L - L}(d_1 - d_2) > 0$ (rewrite additive quadruples $\ell_1 + d_1 = \ell_2 + d_2$ as $d_1 - d_2 = \ell_2 - \ell_1$ and double-count). In particular, there exists $b \in B$ and $X \subseteq B - b$ of size $\abs X \ge \frac{\abs D}{(2K)^k}$ such that $\for i, \ell_1(x) - \ell_2(x) = x$. We are now done: By the triangle inequality, for each $x \in X$,
\begin{align*}
\norm{\tau_{-x}(f \ast \mu_A) - f \ast \mu_A}_{L^p(G)}
\le & \norm{\tau_{-x}(f \ast \mu_A - \E_i \tau_{-\ell_2(x)}(f))}_{L^p(G)} \\
& + \norm{\tau_{-x}\E_i \tau_{-\ell_2(x)}(f) - f \ast \mu_A}_{L^p(G)} \\
\le & \norm{\tau_{-x}(f \ast \mu_A - \E_i \tau_{-\ell_2(x)}(f))}_{L^p(G)} \\
& + \norm{\E_i \tau_{-\ell_1(x)}(f) - f \ast \mu_A}_{L^p(G)} \\
\le & \eps \norm f_{L^p(G)} \text{ by definition of }L
\end{align*}
\end{proof}
\begin{thm}[Polynomial Bogolyubov]\label{thm:polynomial-bogolyubov}
Let $A \subseteq \F_p^n$ be a set of density $\alpha > 0$. Then there exists a subspace $V \le \F_p^n$ of codimension $O(\log^4\alpha^{-1})$ such that $V \subseteq A + A - (A + A)$.
\end{thm}
\begin{proof}
See Example Sheet 3.
\end{proof}
\begin{thm}[Schoen, Shkredov]
Let $p \ne 5$ and let $A \subseteq \F_p^n$ be a set containing no nontrivial solution to $x_1 + x_2 + x_3 + x_4 + x_5 = 5y$. Then $\abs A = \exp(-\Omega(n^{\frac 15}))\abs{\F_p^n}$.
\end{thm}
\begin{proof}
Let $\alpha$ be the density of $A$. Partition $A$ into $A_1 \union A_2$ where $\abs{A_1} = \floor{\frac\alpha 2 p^n}, \abs{A_2} = \ceil{\frac\alpha 2 p^n}$. By averaging, find $z$ such that $\abs{A_1 \inter (z - A_2)} \ge \frac{\alpha^2}4 p^n$. Let $A' = A_1 \inter (z - A_2)$. By Theorem \ref{thm:polynomial-bogolyubov}, there exists $V \le \F_p^n$ of codimension $O(\log^4\alpha^{-1})$ such that $V \subseteq A' + A' - (A' + A')$. Hence
$$2z + V \subseteq 2z + A' + A' - (A' + A') \subseteq A_1 + A_1 + A_2 + A_2$$
Consequently, $(5 \cdot A - A) \inter (2z + V) = \emptyset$. Else there would be $x, y \in A, a_1, a_1' \in A_1, a_2, a_2' \in A_2$ such that $5y - x = a_1 + a_1' + a_2 + a_2'$ which would yield a nontrivial solution since $A_1, A_2$ are disjoint. If follows that for all $w \in \F_p^n$ at most one of $A \inter (w + V)$ and $(5 \cdot A) \inter (w + 2z + V)$ can be nonempty. Therefore
$$2\abs A = \sum_{w \in V^\perp} \abs{A \inter (w + V)} + \abs{5 \cdot A \inter (w + 2z + V)} \le \abs{V^\perp} \sup_{w \in V^\perp} \abs{A \inter (w + V)}$$
So there exists $w \in V^\perp$ such that $\abs{A \inter (w + V)} \ge \frac{2\abs A}{\abs{V^\perp}} = 2\alpha V$. The set $A \inter (w + V) \subseteq w + V$ has density at least $2\alpha$ and contains no nontrivial solution. \\
After $t$ steps, we obtain a subspace $W$ of codimension $O(t\log^4\alpha^{-1})$ and $w$ such that $\abs{A \inter (w + W)} \ge 2^t\alpha \abs W$. Arguing as in the proof of Theorem \ref{thm:meshulam} yields the result.
\end{proof}
We get a similar bound in $\F_n$ where Behrend's construction offers a comparable lower bound.
\newpage
\section{Further topics}
In $\F_p^n$, we can do much better, even for 3APs.
\begin{thm}[Ellenberg-Gijswijt, based on Croot-Lev-Pach]
Let $A \subseteq \F_3^n$ be a set containing no nontrivial 3AP. Then $\abs A = O(2.765^n)$.
\end{thm}
Let $M_n$ be the set of monomials in $X_1, \dots, X_n$ whose degree in each variable is at most $2$. Let $V_n$ be the $\F_3$-vector space generated by $M_n$. For any $d \in [0, 2n]$, write $M_n^d$ for the set of monomials in $M_n$ of total degree at most $d$, and write $V_n^d$ for the corresponding vector space. Set $m_d = \dim V_n^d = \abs{M_n^d}$.
\begin{lem}\label{lem:polynomial-diagonal}
Let $A \subseteq \F_3^n$ and suppose $P \in V_n^d$ is such that $P(a + a') = 0$ for all $a, a' \in A$ distinct. Then
$$\abs{\{a \in A \mid P(2a) \ne 0\}} \le 2m_{\frac d2}$$
\end{lem}
\begin{proof}
Every $P \in V_n^d$ can be written as a linear combination of monomials from $M_n^d$. So
$$P(x + y) = \sum_{\substack{m, m' \in M_n^d \\ \deg m + \deg m' \le d}} c_{m, m'} m(x)m'(y)$$
for some coefficients $c_{m, m'}$. Since at least one of $m, m'$ has degree $\le \frac d2$, we can write
$$P(x + y) = \sum_{m \in M_n^{\frac d2}} m(x) F_m(y) + \sum_{m' \in M_n^{\frac d2}} m'(y) G_{m'}(x)$$
where $F_m, G_{m'}$ are polynomials. Viewing $P$ as an $\abs A \times \abs A$-matrix, we see that it can be written as a sum of at most $2m_{\frac d2}$ rank 1 matrices. Hence $\rank P \le 2m_{\frac d2}$. But $P$ is a diagonal matrix by assumption. Hence
$$\abs{\{a \in A \mid P(2a) \ne 0\}} = \rank P \le 2m_{\frac d2}$$
\end{proof}
\begin{prop}
Let $A \subseteq \F_3^n$ be a set containing no nontrivial 3AP. Then $\abs A \le 3m_{\frac{2n}3}$.
\end{prop}
\begin{proof}
Let $d \in [1, 2n]$ be an integer to be chosen later. Let $W$ be the subspace of $V_n^d$ that vanish on $2 \cdot A^c$. Clearly,
$$\dim W \ge \dim V_n^d - \abs{2 \cdot A^c} = m_d - (3^n - \abs A)$$
We claim that there is $P \in W$ such that $\abs{\supp P} \ge \dim W$. Indeed, pick $P \in W$ with maximal support. If $\abs{\supp P} < \dim W$, then there is a nonzero $Q \in W$ vanishing on $\supp P$, in which case $P$ and $Q$ have disjoint support and
$$\supp(P + Q) ) \supp P \union \supp Q \subsetneq \supp P$$
contradicting the maximality of $P$. \\
By assumption, $\{a + a' \mid a, a' \in A, a \ne a'\}$ and $2 \cdot A$ are disjoint. So any polynomial vanishing on $2 \cdot A^c$ also vanishes on $\{a + a' \mid a, a' \in A, a \ne a'\}$. By Lemma \ref{lem:polynomial-diagonal},
$$\abs{\supp P} = \abs{\{x \mid P(x) \ne 0\}} = \abs{\{a \in A \mid P(2a) \ne 0\}} \le 2m_{\frac d2}$$
Putting everything together,
$$m_d - (3^n - \abs A) \le \dim W \le \abs{\supp P} \le 2m_{\frac d2}$$
But monomials in $M_n \setminus M_n^d$ are in bijection with monomials of degree at most $2n - d$ (via $x_1^{\alpha_1} \dots x_n^{\alpha_n} \mapsto x_1^{2 - \alpha_1} \dots x_n^{2 - \alpha_n}$), whence $3^n - m_d = m_{2n - d}$. Thus setting $d = \frac{4n}3$ yields
$$\abs A \le (3^n - m_d) + 2m_{\frac d2} = m_{2n - d} + 2m_{\frac d2} = 3m_{\frac{2n}3}$$
\end{proof}
We do {\bf not} know of a comparable bound for 4APs. Fourier-analytic techniques also fail.
\begin{eg}
Recall from Lemma \ref{lem:3AP-estimate} that
$$\abs{T_3(1_A, 1_A, 1_A) - \alpha^3} \le \sup_{t \ne 0} \abs{\widehat{1_A}(t)}$$
But it is impossible to bound
$$\abs{T_4(1_A, 1_A, 1_A, 1_A) - \alpha^4} = \abs{\E_{x, d} 1_A(x) 1_A(x + d) 1_A(x + 2d) 1_A(x + 3d) - \alpha^4}$$
by $\sup_{t \ne 0} \abs{\widehat{1_A}(t)}$. Indeed, consider $Q = \{x \in \F_p^n \mid x \cdot x = 0\}$. By Question 2.ii on Example Sheet 1, $\frac{\abs Q}{p^n} = \frac 1p + O(p^{-\frac n2})$ and $\sup_{t \ne 0} \abs{\widehat{1_A}(t)} = O(p^{-\frac n2})$. But, given a 3AP $x, x + d, x + 2d \in Q$, we automatically have $x + 3d \in Q$ because of the following identity:
$$x \cdot x - 3(x + d) \cdot (x + d) + 3(x + 2d) \cdot (x + 2d) - (x + 3d) \cdot (x + 3d)$$
So $T_4(1_A, 1_A, 1_A, 1_A) = T_3(1_A, 1_A, 1_A) = \alpha^3 + o(1)$ by Lemma \ref{lem:3AP-estimate}.
\end{eg}
\begin{dfn}
Given $g : G \to \C$ with $G$ finite abelian, define its {\bf $U^2$-norm} by the formula
$$\norm f_{U^2}^4 = \E_{x, a, b} f(x) \overline{f(x + a) f(x + b)} f(x + a + b)$$
\end{dfn}
Question 3.i on Example Sheet 1 showed that $\norm f_{U^2} = \norm{\hat f}_{\ell^4}$, so this is indeed a norm. Question 3.ii asserted the following.
\begin{lem}\label{lem:t3-le-u2}
Let $f_1, f_2, f_3 : G \to \C$. Then
\begin{align*}
\abs{T_3(f_1, f_2, f_3)} \le
& \norm{f_1}_{L^2} \norm{f_2}_{U^2} \norm{f_3}_{U^2}, \\
& \norm{f_1}_{U^2} \norm{f_2}_{L^2} \norm{f_3}_{U^2}, \\
& \norm{f_1}_{U^2} \norm{f_2}_{U^2} \norm{f_3}_{L^2}
\end{align*}
In particular,
\begin{align*}
\abs{T_3(f_1, f_2, f_3)} \le
& \norm{f_1}_{U^2} \norm{f_2}_\infty \norm{f_3}_\infty, \\
& \norm{f_1}_\infty \norm{f_2}_{U^2} \norm{f_3}_\infty, \\
& \norm{f_1}_\infty \norm{f_2}_\infty \norm{f_3}_{U^2}
\end{align*}
\end{lem}
Note that
$$\sup_\gamma \abs{\hat f(\gamma)}^4 \le \sum_\gamma \abs{\hat f(\gamma)}^4 \le \sup_\gamma \abs{\hat f(\gamma)}^2 \sum_\gamma \abs{\hat f(\gamma)}^2$$
Thus, by Parseval,
$$\norm{\hat f}_\infty \le \norm f_{U^2} \le \norm{\hat f}_\infty^{\frac 12} \norm f_{L^2}^{\frac 12}$$
Moreover, if $f = f_A = 1_A - \alpha$, then
$$T_3(f, f, f) = T_3(1_A - \alpha, 1_A - \alpha, 1_A - \alpha) = T_3(1_A, 1_A, 1_A) - \alpha^3$$
We could therefore reformulate the first step in the proof of Meshulam's theorem (Theorem \ref{thm:meshulam}) as follows: \\
If $p^n \ge 2\alpha^{-2}$, then
$$\frac{\alpha^3}2 \le \abs{T_3(1_A, 1_A, 1_A) - \alpha} \le \norm{f_A}_{U^2}$$
by Lemma \ref{lem:t3-le-u2}.
\newlec
It remains to show that if $\norm{f_A}_{U^2}$ is not too small then there exists a subspace $V \le \F_p^n$ of bounded codimension on which $A$ has increased density.
\begin{thm}[$U^2$ inverse theorem]
Let $f : \F_p^n \to \C$ satisfy $\norm f_\infty \le 1$ and $\norm f_{U^2} \ge \delta$ for some $\delta > 0$. Then there exists $b$ such that $\abs{\E_x f(x) \omega^{x \cdot b}} \ge \delta^2$. \\
In other words, $\abs{\inn f\phi} \ge \delta^2$ for $\phi(x) = \omega^{x \cdot b}$ and we say that "$f$ correlates with a linear function".
\end{thm}
\begin{proof}
We have seen that $\norm f_{U^2}^2 \le \norm{\hat f}_\infty \norm f_2 \le \norm{\hat f}_\infty$. So $\delta^2 \le \norm{\hat f}_\infty = \abs{\E_x f(x) \omega^{x \cdot n}}$ for some $b$.
\end{proof}
\begin{dfn}
Given $f : G \to \C$ with $G$ finite abelian, define its {\bf $U^3$-norm} by
\begin{align*}
\norm f_{U^3}^8
= & \E_{x, a, b, c} f(x) \overline{f(x + a) f(x + b) f(x + c)} \\
& f(x + a + b) f(x + a + c) f(x + b + c) \overline{f(x + a + b + c)} \\
= & \E_{x, h_1, h_2, h_3} \prod_{\eps \in \{0, 1\}^3} \mathrm{conj}^{\abs\eps} f(x + \eps \cdot h)
\end{align*}
\end{dfn}
It is easy to verify that $\norm f_{U^3}^8 = \E_h \norm{\Delta_h f}_{U^2}^4$ where $\Delta_h f(x) = f(x) \overline{f(x + h)}$.
\begin{dfn}
Given functions $f_\eps : G \to \C$ for $\eps \in \{0, 1\}^3$, define the {\bf Gowers $U^3$-inner product} by
$$\langle f\rangle_{U^3} = \E_h \norm{\Delta_h f}_{U^2}^4$$
\end{dfn}
Observe that $\langle f, \dots, f\rangle_{U^3} = \norm f_{U^3}^8$.
\begin{lem}[Gowers-Cauchy-Schwarz]
Given $f_\eps : G \to \C$ for $\eps \in \{0, 1\}^3$,
$$\abs{\langle f\rangle_{U^3}} \le \prod_\eps \norm{f_\eps}_{U^3}$$
\end{lem}
\begin{proof}
See Example Sheet 3.
\end{proof}
Setting $f_\eps = \begin{cases}
f & \text{ if } \eps_0 = 0 \\
1 & \text{ if } \eps_0 = 1
\end{cases}$, the LHS equals $\norm f_{U^2}^4$. Hence $\norm f_{U^2} \le \norm f_{U^3}$.
\begin{prop}\label{prop:t4-le-u3}
Let $f : G \to \C$ with $\norm f_\infty \le 1$. Then
$$\abs{T_4(f, f, f, f)} \le \norm f_{U^3}$$
\end{prop}
\begin{proof}
Reparametrising, we have
\begin{align*}
T_4(f, f, f, f)
& = \E_{a, b, c, d}
\underbrace{f(3a + 2b + c)}_{=: f_1(a, b, c)}
\underbrace{f(2a + b - d)}_{=: f_2(a, b, d)}
\underbrace{f(a - c - 2d)}_{=: f_3(a, c, d)}
\underbrace{f(-b - 2c - 3d)}_{=: f_4(b, c, d)} \\
& = \E_{a, b, c} f_1(a, b, c) \E_d f_2(a, b, d) f_3(a, c, d) f_4(b, c, d)
\end{align*}
So
\begin{align*}
\abs{T_4(f, f, f, f)}^2
& \le \E_{a, b, c} \abs{\E_d f_2(a, b, d) f_3(a, c, d) f_4(b, c, d)}^2 \\
& = \E_{d, d', a, b} f_2(a, b, d) \overline{f_2(a, b, d')} \E_c f_3(a, c, d) f_4(b, c, d) \overline{f_3(a, c, d') f_4(b, c, d')}
\end{align*}
Hence
\begin{align*}
\abs{T_4(f, f, f, f)}^4
\le & \E_{d, d', a, b} \abs{\E_c f_3(a, c, d) f_4(b, c, d) \overline{f_3(a, c, d') f_4(b, c, d')}}^2 \\
= & \E_{c, c', d, d', a} f_3(a, c, d) \overline{f_3(a, c, d') f_3(a, c', d)} f_3(a, c', d') \\
& \E_b f_4(b, c, d) \overline{f_4(b, c, d'), f_4(b, c', d)} f_4(b, c', d')
\end{align*}
Finally,
\begin{align*}
\abs{T_4(f, f, f, f)}^8
\le & \E_{c, c', d, d', a} \abs{\E_b f_4(b, c, d) \overline{f_4(b, c, d'), f_4(b, c', d)} f_4(b, c', d')}^2 \\
= & \E_{b, b', c, c', d, d'} f_4(b, c, d) \overline{f_4(b, c, d'), f_4(b, c', d)} f_4(b, c', d') \\
& \overline{f_4(b', c, d)} f_4(b', c, d'), f_4(b', c', d) \overline{f_4(b', c', d')} \\
= & \norm f_{U^3}^8
\end{align*}
\end{proof}
One might hope to generalise Meshulam's theorem (Theorem \ref{thm:meshulam}) as follows.
\begin{thm}[Szemerédi for 4APs]
Let $A \subseteq \F_p^n$ be a set containing no nontrivial 4APs. Then $\abs A = o(p^n)$.
\end{thm}
\begin{idea}
By Proposition \ref{prop:t4-le-u3} with $f = f_A = 1_A - \alpha$,
$$T_4(1_A, 1_A, 1_A, 1_A) - \alpha^4 = T_4(f_A, f_A, f_A, f_A) + \underbrace{\dots + \dots + \dots}_{\text{controlled by } \norm{f_A}_{U^2}} + \underbrace{\dots + \dots + \dots}_{\text{explicit}}$$
Hence, and since $\norm{f_A}_{U^2} \le \norm{f_A}_{U^3}$,
$$\abs{T_4(1_A, 1_A, 1_A, 1_A) - \alpha^4} \le 14\norm{f_A}_{U^3}$$
so if $A$ contains no nontrivial 4AP and $p^n \ge 2\alpha^{-3}$ then $\frac{\alpha^4}2 \le 14\norm{f_A}_{U^3}$.
\end{idea}
What can we say about functions whose $U^3$-norm is large?
\begin{eg}
Let $M$ be a $n \times n$ matrix with entries in $\F_p$. Then $f(x) = \omega^{x^\perp M x}$ satisfies $\norm f_{U^3} = 1$.
\end{eg}
\begin{thm}[$U^3$ inverse theorem]
Let $f : \F_p^n \to \C$ satisfying $\norm f_\infty \le 1$ and $\norm f_{U^3} \ge \delta$ for some $\delta > 0$. Then there exists a symmetric matrix $M$ with entries in $\F_p$ and $b \in \F_p^n$ such that
$$\abs{\E_x f(x) \omega^{x^\perp M x + b^\perp x}} \ge c_p(\delta)$$
where $c_p$ is a polynomial. \\
In other words, $\abs{\langle f, \phi\rangle} \ge c_p(\delta)$ for $\phi(x) = \omega^{x^\perp M x + b^\perp x}$ and we say that "$f$ correlates with a quadratic phase function".
\end{thm}
\begin{proof}[Proof sketch]
Suppose $\norm f_{U^3} \ge \delta$.
{\bf Step 1: "Weak linearity"} \\
If $\norm f_{U^3}^8 = \E_h \norm{\Delta_h f}_{U^2}^4 \ge \delta^8$, then for at least a $\frac{\delta^8}2$-proportion of $h \in \F_p^n$ we have $\norm{\Delta_h f}_{U^2}^4 \ge \frac{\delta^8}2$. For each such $f$, there exists $t_h$ such that $\abs{\widehat{\Delta_h}f(t_h)} \ge \frac{\delta^8}2$. Working a tiny bit harder, one can obtain the following.
\begin{prop}\label{prop:weak-linearity}
Let $f : \F_p^n \to \C$ satisfy $\norm f_\infty \le 1$ and $\norm f_{U^3} \ge \delta$ for some $\delta > 0$. Suppose that $\abs{\F_p^n} = \Omega_\delta(1)$. Then there exists $S \subseteq \F_p^n$ of density $\Omega_\delta(1)$ and a function $\phi : S \to \F_p^n$ such that
\begin{enumerate}
\item $\abs{\widehat{\Delta_h}f(\phi(h))} = \Omega_\delta(1)$
\item There are at least $\Omega_\delta(\abs{\F_p^n}^2)$ additive quadruples $(s_1, s_2, s_3, s_4) \in S^4$ (namely $s_1 + s_2 = s_3 + s_4$) such that $\phi(s_1) + \phi(s_2) = \phi(s_3) + \phi(s_4)$.
\end{enumerate}
\end{prop}
{\bf Step 2: "Strong linearity"} \\
If $S$ and $\phi$ are as above, then there is an affine map $\psi : \F_p^n \to \widehat{\F_p^n}$ which coincides with $\phi$ for many elements of $S$. More precisely,
\begin{prop}
Let $S$ and $\phi$ be given by Proposition \ref{prop:weak-linearity}. Then there exists a $n \times n$ matrix with entries in $\F_p$ and $b \in \F_p^n$ such that the map $\psi : \F_p^n \to \widehat{\F_p^n}$ satisfies $\psi(x) = \phi(x)$ for $\Omega_\delta(\abs{\F_p^n})$ elements $x$ of $S$
\end{prop}
\begin{proof}
Consider the graph $\Gamma = \{(h, \phi(h)) \mid h \in S\} \subseteq \F_p^n \times \widehat{\F_p^n}$. By Proposition \ref{prop:weak-linearity}, $\Gamma$ has $\Omega_\delta(\abs{\F_p^n})$ additive quadruples. By Balog-Szemerédi-Gowers (Theorem \ref{thm:bsg}), there exists $\Gamma' \subseteq \Gamma$ with $\abs{\Gamma'} = \Omega_\delta(\abs\Gamma) = \Omega_\delta(\abs{\F_p^n})$ and $\abs{\Gamma' + \Gamma'} = O_\delta(\abs{\Gamma'})$. Denote by $\pi : \F_p^n \times \widehat{\F_p^n} \to \F_p^n$ the projection onto the first factor. Define $S' = \pi(\Gamma')$ and note that $\abs{S'} = \abs{\Gamma'} = \Omega_\delta(\abs{\F_p^n})$. By Freiman-Ruzsa (Theorem \ref{thm:freiman-ruzsa}) applied to $\Gamma' \subseteq \F_p^n \times \widehat{\F_p^n}$, there exists a subspace $H \le \F_p^n \times \widehat{\F_p^n}$ with $\abs H = \Omega_\delta(\abs{\Gamma'}) = \Omega_\delta(\abs{\F_p^n})$ such that $\Gamma' \subseteq H$. By construction, $S' \subseteq \pi(H)$. Moreover,
$$\abs{\ker \pi\restriction_H} = \frac{\abs H}{\abs{\pi(H)}} = \frac{O_\delta(\abs{\F_p^n})}{\abs{S'}} = O_\delta(1)$$
We may pick $H^*$ a transversal of $\ker \pi\restriction_H$ and partition $H$ into cosets of $H^*$. $\pi$ is injective on each coset. By averaging, there exists $x + H^*$ such that
$$\abs{\Gamma' \inter (x + H^*)} = \Omega_\delta(\abs{\Gamma'}) = \Omega_\delta(\abs{\F_p^n})$$
Set $\Gamma'' = \Gamma' \inter (x + H^*)$ and define $S'' = \pi(\Gamma'')$. Now, $\pi\restriction_{x + H^*}$ is a bijection onto its image $V = \im \pi\restriction_{x + H^*}$. Thus we have an affine map $\psi : V \to \widehat{\F_p^n}$ such that $(h, \psi(h)) \in \Gamma''$ for all $h \in S''$.
\end{proof}
{\bf Step 3: Symmetry argument} \\
Having obtained $\psi(x) = Mx + b$ for some matrix $M$ and vector $b$ such that $(h, Mh + b) \in \Gamma''$ for all $h \in S''$, we need to turn $M$ into a symmetric matrix in preparation of Step 4.
{\bf Step 4: "Integrating"}
\begin{prop}
Suppose $f, M, b$ are as in Step 3 and $\E_h \abs{\widehat{\Delta_h}f(Mh + b)}^2 = \Omega_\delta(1)$. If $p > 2$, then there exists $b' \in \F_p^n$ such that $\E_x f(x) \omega^{x^T\frac{M + M^T}2 x + b'^T x} = \Omega_\delta(1)$.
\end{prop}
\begin{proof}
See Example Sheet 3.
\end{proof}