forked from cnhemiya/shitu-manager
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
340 lines (299 loc) · 12.8 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from PyQt5 import QtCore, QtGui, QtWidgets
import mod.mainwindow
from paddleclas.deploy.utils import config, logger
from paddleclas.deploy.python.predict_rec import RecPredictor
from fastapi import FastAPI
import uvicorn
import numpy as np
import faiss
from typing import List
import pickle
import cv2
import socket
import json
import operator
from multiprocessing import Process
"""
完整的index库如下:
root_path/ # 库存储目录
|-- image_list.txt # 图像列表,每行:image_path label。由前端生成及修改。后端只读
|-- features.pkl # 建库之后,保存的embedding向量,后端生成,前端无需操作
|-- images # 图像存储目录,由前端生成及增删查等操作。后端只读
| |-- md5.jpg
| |-- md5.jpg
| |-- ……
|-- index # 真正的生成的index库存储目录,后端生成及操作,前端无需操作。
| |-- vector.index # faiss生成的索引库
| |-- id_map.pkl # 索引文件
"""
class ShiTuIndexManager(object):
def __init__(self, config):
self.root_path = None
self.image_list_path = "image_list.txt"
self.image_dir = "images"
self.index_path = "index/vector.index"
self.id_map_path = "index/id_map.pkl"
self.features_path = "features.pkl"
self.index = None
self.id_map = None
self.features = None
self.config = config
self.predictor = RecPredictor(config)
def _load_pickle(self, path):
if os.path.exists(path):
return pickle.load(open(path, 'rb'))
else:
return None
def _save_pickle(self, path, data):
if not os.path.exists(os.path.dirname(path)):
os.makedirs(os.path.dirname(path), exist_ok=True)
with open(path, 'wb') as fd:
pickle.dump(data, fd)
def _load_index(self):
self.index = faiss.read_index(
os.path.join(self.root_path, self.index_path))
self.id_map = self._load_pickle(
os.path.join(self.root_path, self.id_map_path))
self.features = self._load_pickle(
os.path.join(self.root_path, self.features_path))
def _save_index(self, index, id_map, features):
faiss.write_index(index, os.path.join(self.root_path, self.index_path))
self._save_pickle(
os.path.join(self.root_path, self.id_map_path), id_map)
self._save_pickle(
os.path.join(self.root_path, self.features_path), features)
def _update_path(self, root_path, image_list_path=None):
if root_path == self.root_path:
pass
else:
self.root_path = root_path
if not os.path.exists(os.path.join(root_path, "index")):
os.mkdir(os.path.join(root_path, "index"))
if image_list_path is not None:
self.image_list_path = image_list_path
def _cal_featrue(self, image_list):
batch_images = []
featrures = None
cnt = 0
for idx, image_path in enumerate(image_list):
image = cv2.imread(image_path)
if image is None:
return "{} is broken or not exist. Stop"
else:
image = image[:, :, ::-1]
batch_images.append(image)
cnt += 1
if cnt % self.config["Global"]["batch_size"] == 0 or (
idx + 1) == len(image_list):
if len(batch_images) == 0:
continue
batch_results = self.predictor.predict(batch_images)
featrures = batch_results if featrures is None else np.concatenate(
(featrures, batch_results), axis=0)
batch_images = []
return featrures
def _split_datafile(self, data_file, image_root):
'''
data_file: image path and info, which can be splitted by spacer
image_root: image path root
delimiter: delimiter
'''
gallery_images = []
gallery_docs = []
gallery_ids = []
with open(data_file, 'r', encoding='utf-8') as f:
lines = f.readlines()
for _, ori_line in enumerate(lines):
line = ori_line.strip().split()
text_num = len(line)
assert text_num >= 2, f"line({ori_line}) must be splitted into at least 2 parts, but got {text_num}"
image_file = os.path.join(image_root, line[0])
gallery_images.append(image_file)
gallery_docs.append(ori_line.strip())
gallery_ids.append(os.path.basename(line[0]).split(".")[0])
return gallery_images, gallery_docs, gallery_ids
def create_index(self,
image_list: str,
index_method: str="HNSW32",
image_root: str=None):
if not os.path.exists(image_list):
return "{} is not exist".format(image_list)
if index_method.lower() not in ['hnsw32', 'ivf', 'flat']:
return "The index method Only support: HNSW32, IVF, Flat"
self._update_path(os.path.dirname(image_list), image_list)
# get image_paths
image_root = image_root if image_root is not None else self.root_path
gallery_images, gallery_docs, image_ids = self._split_datafile(
image_list, image_root)
# gernerate index
if index_method == "IVF":
index_method = index_method + str(
min(max(int(len(gallery_images) // 32), 2), 65536)) + ",Flat"
index = faiss.index_factory(
self.config["IndexProcess"]["embedding_size"], index_method,
faiss.METRIC_INNER_PRODUCT)
self.index = faiss.IndexIDMap2(index)
features = self._cal_featrue(gallery_images)
self.index.train(features)
index_ids = np.arange(0, len(gallery_images)).astype(np.int64)
self.index.add_with_ids(features, index_ids)
self.id_map = dict()
for i, d in zip(list(index_ids), gallery_docs):
self.id_map[i] = d
self.features = {
"features": features,
"index_method": index_method,
"image_ids": image_ids,
"index_ids": index_ids.tolist()
}
self._save_index(self.index, self.id_map, self.features)
def open_index(self, root_path: str, image_list_path: str) -> str:
self._update_path(root_path)
_, _, image_ids = self._split_datafile(image_list_path, root_path)
if os.path.exists(os.path.join(self.root_path, self.index_path)) and \
os.path.exists(os.path.join(self.root_path, self.id_map_path)) and \
os.path.exists(os.path.join(self.root_path, self.features_path)):
self._update_path(root_path)
self._load_index()
if operator.eq(set(image_ids), set(self.features['image_ids'])):
return ""
else:
return "The image list is different from index, Please update index"
else:
return "File not exist: features.pkl, vector.index, id_map.pkl"
def update_index(self, image_list: str, image_root: str=None) -> str:
if self.index and self.id_map and self.features:
image_paths, image_docs, image_ids = self._split_datafile(
image_list, image_root
if image_root is not None else self.root_path)
# for add image
add_ids = list(
set(image_ids).difference(set(self.features["image_ids"])))
add_indexes = [i for i, x in enumerate(image_ids) if x in add_ids]
add_image_paths = [image_paths[i] for i in add_indexes]
add_image_docs = [image_docs[i] for i in add_indexes]
add_image_ids = [image_ids[i] for i in add_indexes]
self._add_index(add_image_paths, add_image_docs, add_image_ids)
# delete images
delete_ids = list(
set(self.features["image_ids"]).difference(set(image_ids)))
self._delete_index(delete_ids)
self._save_index(self.index, self.id_map, self.features)
return ""
else:
return "Failed. Please create or open index first"
def _add_index(self, image_list: List, image_docs: List, image_ids: List):
if len(image_ids) == 0:
return
featrures = self._cal_featrue(image_list)
index_ids = (
np.arange(0, len(image_list)) + max(self.id_map.keys()) + 1
).astype(np.int64)
self.index.add_with_ids(featrures, index_ids)
for i, d in zip(index_ids, image_docs):
self.id_map[i] = d
self.features['features'] = np.concatenate(
[self.features['features'], featrures], axis=0)
self.features['image_ids'].extend(image_ids)
self.features['index_ids'].extend(index_ids.tolist())
def _delete_index(self, image_ids: List):
if len(image_ids) == 0:
return
indexes = [
i for i, x in enumerate(self.features['image_ids'])
if x in image_ids
]
self.features["features"] = np.delete(
self.features["features"], indexes, axis=0)
self.features["image_ids"] = np.delete(
np.asarray(self.features["image_ids"]), indexes, axis=0).tolist()
index_ids = np.delete(
np.asarray(self.features["index_ids"]), indexes, axis=0).tolist()
id_map_values = [self.id_map[i] for i in index_ids]
self.index.reset()
ids = np.arange(0, len(id_map_values)).astype(np.int64)
self.index.add_with_ids(self.features['features'], ids)
self.id_map.clear()
for i, d in zip(ids, id_map_values):
self.id_map[i] = d
self.features["index_ids"] = ids
app = FastAPI()
@app.get("/new_index")
def new_index(image_list_path: str,
index_method: str="HNSW32",
index_root_path: str=None,
force: bool=False):
result = ""
try:
if index_root_path is not None:
image_list_path = os.path.join(index_root_path, image_list_path)
index_path = os.path.join(index_root_path, "index", "vector.index")
id_map_path = os.path.join(index_root_path, "index", "id_map.pkl")
if not (os.path.exists(index_path) and
os.path.exists(id_map_path)) or force:
manager.create_index(image_list_path, index_method,
index_root_path)
else:
result = "There alrealy has index in {}".format(index_root_path)
except Exception as e:
result = e.__str__()
data = {"error_message": result}
return json.dumps(data).encode()
@app.get("/open_index")
def open_index(index_root_path: str, image_list_path: str):
result = ""
try:
image_list_path = os.path.join(index_root_path, image_list_path)
result = manager.open_index(index_root_path, image_list_path)
except Exception as e:
result = e.__str__()
data = {"error_message": result}
return json.dumps(data).encode()
@app.get("/update_index")
def update_index(image_list_path: str, index_root_path: str=None):
result = ""
try:
if index_root_path is not None:
image_list_path = os.path.join(index_root_path, image_list_path)
result = manager.update_index(
image_list=image_list_path, image_root=index_root_path)
except Exception as e:
result = e.__str__()
data = {"error_message": result}
return json.dumps(data).encode()
def FrontInterface(server_process=None):
front = QtWidgets.QApplication([])
main_window = mod.mainwindow.MainWindow(process=server_process)
main_window.showMaximized()
sys.exit(front.exec_())
def Server(app, host, port):
uvicorn.run(app, host=host, port=port)
if __name__ == '__main__':
args = config.parse_args()
model_config = config.get_config(
args.config, overrides=args.override, show=True)
manager = ShiTuIndexManager(model_config)
ip = model_config.get('ip', None)
port = model_config.get('port', None)
if ip is None or port is None:
try:
ip = socket.gethostbyname(socket.gethostname())
except:
ip = '127.0.0.1'
port = 8000
Server(app, ip, port)