-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrack_cars.py
330 lines (279 loc) · 15.2 KB
/
track_cars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
import argparse
import os
import sys
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
import numpy as np
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from yolov5.models.experimental import attempt_load
from yolov5.utils.downloads import attempt_download
from yolov5.models.common import DetectMultiBackend
from yolov5.utils.datasets import LoadImages, LoadStreams, VID_FORMATS
from yolov5.utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from yolov5.utils.general import (LOGGER, check_img_size, non_max_suppression, scale_coords, check_requirements, cv2,
check_imshow, xyxy2xywh, increment_path, strip_optimizer, colorstr,
print_args, scale_coords, resize_img, warp_points,)
from yolov5.utils.torch_utils import select_device, time_sync
from yolov5.utils.plots import Annotator, colors, save_one_box
from deep_sort.utils.parser import get_config
from deep_sort.deep_sort import DeepSort
@torch.no_grad()
def run(
image_template_path=ROOT / 'data/template/google_earth.jpg',
warping_matrix_path=ROOT / 'data/template/matrix2.txt',
yolo_model=ROOT / 'yolov5s.pt', # model.pt path(s)
source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
output_path=ROOT / 'result', # output directory
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_vid=False, # save results to video
show_vid=False, # show results to video
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
line_thickness=3, # bounding box thickness (pixels)
suffix='_tracked', # suffix for the name of the processed video/image
config_deepsort='deep_sort/configs/deep_sort.yaml',
deep_sort_model='osnet_x0_25', # model name for OsNet
):
# connect to the sourec
source = str(source)
save_img = not nosave and not source.endswith('.txt') # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
if is_url and is_file:
source = check_file(source) # download
# create output folder if no existing
output_path = str(output_path)
if not os.path.exists(output_path):
os.makedirs(output_path)
deliminator = '.'
# Directories
if type(yolo_model) is str: # single yolo model
exp_name = yolo_model.split(".")[0]
elif type(yolo_model) is list and len(yolo_model) == 1: # single models after --yolo_model
exp_name = yolo_model[0].split(".")[0]
else: # multiple models after --yolo_model
exp_name = "ensemble"
exp_name = exp_name + "_" + deep_sort_model.split('/')[-1].split('.')[0]
# Load model
device = select_device(device)
model = DetectMultiBackend(yolo_model, device=device, dnn=False, data=data, fp16=False)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
if webcam:
show_vid = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
nr_sources = len(dataset)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
nr_sources = 1
vid_path, vid_writer, txt_path = [None] * nr_sources, [None] * nr_sources, [None] * nr_sources
# initialize deepsort
cfg = get_config()
cfg.merge_from_file(opt.config_deepsort)
# Create as many trackers as there are video sources
deepsort_list = []
for i in range(nr_sources):
deepsort_list.append(
DeepSort(
deep_sort_model,
device,
max_dist=cfg.DEEPSORT.MAX_DIST,
max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
)
)
outputs = [None] * nr_sources
if image_template_path:
print('g')
warping_matrix = np.loadtxt(warping_matrix_path) # The matrix for warping the view to the google earth view
image_template = cv2.imread(image_template_path) # Template image for projecting the tracked cars
image_template_h = np.shape(image_template)[0]
image_template_w = np.shape(image_template)[1]
# Run inference
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
dt, seen = [0.0, 0.0, 0.0, 0.0], 0
for path, im, im0s, vid_cap, s in dataset:
t1 = time_sync()
im = torch.from_numpy(im).to(device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
t2 = time_sync()
dt[0] += t2 - t1
# Inference
pred = model(im, augment=False, visualize=False)
t3 = time_sync()
dt[1] += t3 - t2
# NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, False, max_det=max_det)
dt[2] += time_sync() - t3
# Process detections
for i, det in enumerate(pred): # detections per image
seen += 1
if webcam: # nr_sources >= 1
p, im0, _ = path[i], im0s[i].copy(), dataset.count
p = Path(p) # to Path
s += f'{i}: '
txt_file_name = p.name
save_path = os.path.join(output_path, str(p.parent.name)) # im.jpg, vid.mp4, ...
else:
p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) # to Path
# video file
if source.endswith(VID_FORMATS):
txt_file_name = p.stem
save_path = os.path.join(output_path, str(p.parent.name)) # im.jpg, vid.mp4, ...
# folder with imgs
else:
txt_file_name = p.parent.name # get folder name containing current img
save_path = os.path.join(output_path, str(p.parent.name)) # im.jpg, vid.mp4, ...
#save_path = str(save_dir / p.name) # im.jpg
txt_path = os.path.join(output_path,'tracks', txt_file_name) # im.txt
s += '%gx%g ' % im.shape[2:] # print string
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if image_template_path:
annotator2 = Annotator(image_template.copy(), line_width=1, example=str(names), contour='circle')
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
xywhs = xyxy2xywh(det[:, 0:4])
confs = det[:, 4]
clss = det[:, 5]
# pass detections to deepsort
t4 = time_sync()
outputs[i] = deepsort_list[i].update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0)
t5 = time_sync()
dt[3] += t5 - t4
# draw boxes for visualization
if len(outputs[i]) > 0:
for j, (output) in enumerate(outputs[i]):
bboxes = output[0:4]
id = output[4]
cls = output[5]
conf = output[6]
if save_txt:
# to MOT format
bbox_left = output[0]
bbox_top = output[1]
bbox_w = output[2] - output[0]
bbox_h = output[3] - output[1]
# Write MOT compliant results to file
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * 10 + '\n') % (frame_idx + 1, id, bbox_left, # MOT format
bbox_top, bbox_w, bbox_h, -1, -1, -1, i))
#if save_vid or save_crop or show_vid: # Add bbox to image
if 1: # Add bbox to image
c = int(cls) # integer class
label = f'{id:0.0f} {names[c]} {conf:.2f}'
annotator.box_label(bboxes, label, color=colors(c, True))
if image_template_path:
# xyxy_np = np.array(
# [bboxes[0].cpu(), bboxes[1].cpu(), bboxes[2].cpu(), bboxes[3].cpu()]).reshape((2, -1))
xyxy_np = np.array(
[bboxes[0], bboxes[1], bboxes[2], bboxes[3]]).reshape((2, -1))
xyxy2 = warp_points(xyxy_np, warping_matrix)
xyxy2 = xyxy2.reshape((1, -1)).squeeze()
label = f'{id:0.0f} {names[c]}'
annotator2.box_label(xyxy2, label, color=colors(c, True))
if save_crop:
txt_file_name = txt_file_name if (isinstance(path, list) and len(path) > 1) else ''
save_one_box(bboxes, imc, file=output_path / 'crops' / txt_file_name / names[c] / f'{id}' / f'{p.stem}.jpg', BGR=True)
LOGGER.info(f'{s}Done. YOLO:({t3 - t2:.3f}s), DeepSort:({t5 - t4:.3f}s)')
else:
deepsort_list[i].increment_ages()
LOGGER.info('No detections')
# Stream results
im0 = annotator.result()
if image_template_path:
im0 = resize_img(im0, (image_template_w, image_template_h))
im0_2 = annotator2.result()
im0 = cv2.hconcat([im0, im0_2])
if view_img:
cv2.imshow(str(p), im0)
cv2.imshow(str(p), im0)
# cv2.imshow('template', projected_image)
#cv2.imshow('template', im0_2)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
save_path = os.path.join(output_path, ''.join([str(s) for s in Path(path).name.split(deliminator)[0:-1]]) +
suffix + deliminator + Path(path).name.split(deliminator)[-1])
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
# w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
# h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
w = np.shape(im0)[1]
h = np.shape(im0)[0]
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)
# Print time (inference-only)
LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
# Print results
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS, %.1fms deep sort update \
per image at shape {(1, 3, *imgsz)}' % t)
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--yolo-model', nargs='+', type=str, default=ROOT / 'yolov5m.pt', help='model path(s)')
parser.add_argument('--source', type=str, default=ROOT / 'data/videos', help='file/dir/URL/glob, 0 for webcam')
parser.add_argument('--output-path', type=str, default=ROOT / 'result', help='output directory')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=200, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='show results', default=False)
parser.add_argument('--save-txt', action='store_true', help='save MOT compliant results to *.txt')
parser.add_argument('--save-vid', action='store_true', help='save video tracking results')
parser.add_argument('--show-vid', action='store_true', help='display tracking video results')
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3', default=[0, 1, 2, 3, 4, 6, 7])
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
parser.add_argument('--suffix', default='_tracked', type=str, help='suffix for the processed frames/videos')
parser.add_argument('--deep-sort-model', type=str, default='osnet_x0_25')
parser.add_argument('--config-deepsort', type=str, default='deep_sort/configs/deep_sort.yaml')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt
def main(opt):
check_requirements(exclude=('tensorboard', 'thop'))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)