Skip to content

Latest commit

 

History

History
67 lines (55 loc) · 3.1 KB

File metadata and controls

67 lines (55 loc) · 3.1 KB

Remaining Useful Life Prediction Using NASA Battery Data Set

1️⃣ Overview

◽ Objective

  • NASA에서 제공하는 4개 셀 리튬이온 배터리 데이터를 명세하고 분석하여 데이터를 이해한다.
  • 데이터 전처리 및 학습에 알맞은 형태로 가공한다.
  • AI(ML/DL)기반의 다양한 방법론(알고리즘,모델)을 적용한 배터리 잔존수명예측 모델링을 진행한다.

◽ Development Environment

page_type languages products
     Dev        pyspark python   azure azure-databricks

◽ NASA PCoE Battery Data

Download URL - https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/



2️⃣ PreRequirement

◽ Understanding Data

  • SOH : State of Health
  • RUL : Remaining Useful Life
  • EOL : End of Life

◽ Data Structure

  • ❶ cycle: top level structure array containing the charge, discharge and impedance operations

     cycle  ⇦ Complex Data Structure( Nested Data )

  • ❷ type: operation type, can be charge, discharge or impedance

  • ❸ Data: Nested Data Structure(Many Variables)

    type ambient_temperature time data
    charge 24℃ yyyy-MM-dd HH:mm:ss.SSSSSS data
    discharge '' '' ''
    impedance '' '' ''


3️⃣ Methodology

◽ Part1 : Convert .mat to Dataframe

◽ Part2 : EDA(Exploratory Data Analysis)

◽ Part3 : Modeling

◽ LSTM Based Model Prediction Result Example

◽ Understanding LSTM(Long Short-Term Memory)

rnn-lstm-cell

Read a Blog - http://colah.github.io/posts/2015-08-Understanding-LSTMs/

◽ Understanding SVM(Support Vector Machines)

Watch a Youtube - https://www.youtube.com/watch?v=eHsErlPJWUU



4️⃣ Reference

URL① - https://ieeexplore.ieee.org/document/8967059