From bd4b1c07d18d84933e21fcb2defb1e86197dd21b Mon Sep 17 00:00:00 2001 From: "Y.D.X." <73375426+YDX-2147483647@users.noreply.github.com> Date: Thu, 14 Nov 2024 22:37:59 +0800 Subject: [PATCH] =?UTF-8?q?[course]=20=E6=97=A5=E5=B8=B8?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- docs/course/computational-methods.md | 2 +- docs/course/stochastic-geometry.md | 30 ++++++++++++++++++++++++++++ 2 files changed, 31 insertions(+), 1 deletion(-) diff --git a/docs/course/computational-methods.md b/docs/course/computational-methods.md index 298f040..cef1803 100644 --- a/docs/course/computational-methods.md +++ b/docs/course/computational-methods.md @@ -167,7 +167,7 @@ flowchart LR - 计算量:显😀、隐(默认)。 - 相容性:相容(默认)、条件相容👻。 - 稳定性:绝对稳定🎯、条件稳定🎲、绝对不稳定💣。 -- 局部截断误差:$\Order(\tau + h)$ 1️⃣、$\Order(\tau + h^2)$ 1️⃣⁺、$\Order(\tau^2 + \tau h^2)$ 2️⃣。 +- 局部截断误差:$\Order(\tau + h)$ 1️⃣、$\Order(\tau + h^2)$ 1️⃣⁺、$\Order(\tau^2 + \tau h + \tau h^2)$ 2️⃣。 ```mermaid flowchart LR diff --git a/docs/course/stochastic-geometry.md b/docs/course/stochastic-geometry.md index 43289c5..d64566c 100644 --- a/docs/course/stochastic-geometry.md +++ b/docs/course/stochastic-geometry.md @@ -6,6 +6,7 @@ relevant: # Stochastic Geometry $$ +\def\CC{\mathbb{C}} \def\RR{\mathbb{R}} \def\NN{\mathbb{N}} \DeclareMathOperator\expect{\mathbb{E}} @@ -18,6 +19,35 @@ $$ - 概率、随机过程和随机几何及其应用 - Probability, Random Process and Stochastic Geometry in Engineering +## Random Variables + +### Transforms + +> :material-clock-edit-outline: 2024年11月14日。 + +- Probability generating function (PGF, $G$): + + $z \mapsto \expect z^\xi$, $\xi \in \NN$. + +- Moment generating function (MGF, $M$): + + $s \mapsto \expect e^{s \xi}$, $\xi \in \RR$. Note that it may not converge for all $s \in \CC$. + +- Characteristic function (CF, $\varphi$): + + $\nu \mapsto \expect e^{j \nu \xi}$, $\nu \in \RR$. Note that $\abs{\expect e^{j \cdots}} \leq \expect \abs{e^{j \cdots}} = 1$. + +### Bounds of probabilities + +> :material-clock-edit-outline: 2024年11月14日。 + +For a random variable $\xi \in \RR$, there exist the following bounds of $\Pr(\xi \geq x)$. They describe how fast $\xi$, as a sum, converges to the central limit theorem. + +- Markov: $\expect \xi \geq x \Pr(\xi \geq x)$, where $x \in \RR^+$. +- Generalized Markov: $\expect \xi^r \geq x^r \Pr(\xi \geq x)$, where $x,r \in \RR^+$. +- Чебышёв: $\expect \xi^2 \geq x^2 \Pr(\abs{\xi} \geq x)$, where $x \in \RR^+$. +- Chernoff: $M(s) \coloneqq \expect e^{s \xi} \geq e^{s x} \Pr(\xi \geq x)$, where $x\in \RR, s \in \RR^+$. + ## Filters ### Matched filter