forked from black-forest-labs/flux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo_st.py
294 lines (254 loc) · 9.54 KB
/
demo_st.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os
import re
import time
from glob import iglob
from io import BytesIO
import streamlit as st
import torch
from einops import rearrange
from fire import Fire
from PIL import ExifTags, Image
from st_keyup import st_keyup
from torchvision import transforms
from transformers import pipeline
from flux.cli import SamplingOptions
from flux.sampling import denoise, get_noise, get_schedule, prepare, unpack
from flux.util import (
configs,
embed_watermark,
load_ae,
load_clip,
load_flow_model,
load_t5,
)
NSFW_THRESHOLD = 0.85
@st.cache_resource()
def get_models(name: str, device: torch.device, offload: bool, is_schnell: bool):
t5 = load_t5(device, max_length=256 if is_schnell else 512)
clip = load_clip(device)
model = load_flow_model(name, device="cpu" if offload else device)
ae = load_ae(name, device="cpu" if offload else device)
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection")
return model, ae, t5, clip, nsfw_classifier
def get_image() -> torch.Tensor | None:
image = st.file_uploader("Input", type=["jpg", "JPEG", "png"])
if image is None:
return None
image = Image.open(image).convert("RGB")
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Lambda(lambda x: 2.0 * x - 1.0),
]
)
img: torch.Tensor = transform(image)
return img[None, ...]
@torch.inference_mode()
def main(
device: str = "cuda" if torch.cuda.is_available() else "cpu",
offload: bool = False,
output_dir: str = "output",
):
torch_device = torch.device(device)
names = list(configs.keys())
name = st.selectbox("Which model to load?", names)
if name is None or not st.checkbox("Load model", False):
return
is_schnell = name == "flux-schnell"
model, ae, t5, clip, nsfw_classifier = get_models(
name,
device=torch_device,
offload=offload,
is_schnell=is_schnell,
)
do_img2img = (
st.checkbox(
"Image to Image",
False,
disabled=is_schnell,
help="Partially noise an image and denoise again to get variations.\n\nOnly works for flux-dev",
)
and not is_schnell
)
if do_img2img:
init_image = get_image()
if init_image is None:
st.warning("Please add an image to do image to image")
image2image_strength = st.number_input("Noising strength", min_value=0.0, max_value=1.0, value=0.8)
if init_image is not None:
h, w = init_image.shape[-2:]
st.write(f"Got image of size {w}x{h} ({h*w/1e6:.2f}MP)")
resize_img = st.checkbox("Resize image", False) or init_image is None
else:
init_image = None
resize_img = True
image2image_strength = 0.0
# allow for packing and conversion to latent space
width = int(
16 * (st.number_input("Width", min_value=128, value=1360, step=16, disabled=not resize_img) // 16)
)
height = int(
16 * (st.number_input("Height", min_value=128, value=768, step=16, disabled=not resize_img) // 16)
)
num_steps = int(st.number_input("Number of steps", min_value=1, value=(4 if is_schnell else 50)))
guidance = float(st.number_input("Guidance", min_value=1.0, value=3.5, disabled=is_schnell))
seed_str = st.text_input("Seed", disabled=is_schnell)
if seed_str.isdecimal():
seed = int(seed_str)
else:
st.info("No seed set, set to positive integer to enable")
seed = None
save_samples = st.checkbox("Save samples?", not is_schnell)
add_sampling_metadata = st.checkbox("Add sampling parameters to metadata?", True)
default_prompt = (
"a photo of a forest with mist swirling around the tree trunks. The word "
'"FLUX" is painted over it in big, red brush strokes with visible texture'
)
prompt = st_keyup("Enter a prompt", value=default_prompt, debounce=300, key="interactive_text")
output_name = os.path.join(output_dir, "img_{idx}.jpg")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
idx = 0
else:
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]\.jpg$", fn)]
if len(fns) > 0:
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
else:
idx = 0
rng = torch.Generator(device="cpu")
if "seed" not in st.session_state:
st.session_state.seed = rng.seed()
def increment_counter():
st.session_state.seed += 1
def decrement_counter():
if st.session_state.seed > 0:
st.session_state.seed -= 1
opts = SamplingOptions(
prompt=prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
)
if name == "flux-schnell":
cols = st.columns([5, 1, 1, 5])
with cols[1]:
st.button("↩", on_click=increment_counter)
with cols[2]:
st.button("↪", on_click=decrement_counter)
if is_schnell or st.button("Sample"):
if is_schnell:
opts.seed = st.session_state.seed
elif opts.seed is None:
opts.seed = rng.seed()
print(f"Generating '{opts.prompt}' with seed {opts.seed}")
t0 = time.perf_counter()
if init_image is not None:
init_image = init_image.to(torch_device)
if resize_img:
init_image = torch.nn.functional.interpolate(init_image, (opts.height, opts.width))
else:
h, w = init_image.shape[-2:]
init_image = init_image[..., : 16 * (h // 16), : 16 * (w // 16)]
opts.height = init_image.shape[-2]
opts.width = init_image.shape[-1]
if offload:
ae.encoder.to(torch_device)
init_image = ae.encode(init_image.to())
if offload:
ae = ae.cpu()
torch.cuda.empty_cache()
# prepare input
x = get_noise(
1,
opts.height,
opts.width,
device=torch_device,
dtype=torch.bfloat16,
seed=opts.seed,
)
# divide pixel space by 16**2 to acocunt for latent space conversion
timesteps = get_schedule(
opts.num_steps,
(x.shape[-1] * x.shape[-2]) // 4,
shift=(not is_schnell),
)
if init_image is not None:
t_idx = int((1 - image2image_strength) * num_steps)
t = timesteps[t_idx]
timesteps = timesteps[t_idx:]
x = t * x + (1.0 - t) * init_image.to(x.dtype)
if offload:
t5, clip = t5.to(torch_device), clip.to(torch_device)
inp = prepare(t5=t5, clip=clip, img=x, prompt=opts.prompt)
# offload TEs to CPU, load model to gpu
if offload:
t5, clip = t5.cpu(), clip.cpu()
torch.cuda.empty_cache()
model = model.to(torch_device)
# denoise initial noise
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
# offload model, load autoencoder to gpu
if offload:
model.cpu()
torch.cuda.empty_cache()
ae.decoder.to(x.device)
# decode latents to pixel space
x = unpack(x.float(), opts.height, opts.width)
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
x = ae.decode(x)
if offload:
ae.decoder.cpu()
torch.cuda.empty_cache()
t1 = time.perf_counter()
fn = output_name.format(idx=idx)
print(f"Done in {t1 - t0:.1f}s.")
# bring into PIL format and save
x = x.clamp(-1, 1)
x = embed_watermark(x.float())
x = rearrange(x[0], "c h w -> h w c")
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
nsfw_score = [x["score"] for x in nsfw_classifier(img) if x["label"] == "nsfw"][0]
if nsfw_score < NSFW_THRESHOLD:
buffer = BytesIO()
exif_data = Image.Exif()
if init_image is None:
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
else:
exif_data[ExifTags.Base.Software] = "AI generated;img2img;flux"
exif_data[ExifTags.Base.Make] = "Black Forest Labs"
exif_data[ExifTags.Base.Model] = name
if add_sampling_metadata:
exif_data[ExifTags.Base.ImageDescription] = prompt
img.save(buffer, format="jpeg", exif=exif_data, quality=95, subsampling=0)
img_bytes = buffer.getvalue()
if save_samples:
print(f"Saving {fn}")
with open(fn, "wb") as file:
file.write(img_bytes)
idx += 1
st.session_state["samples"] = {
"prompt": opts.prompt,
"img": img,
"seed": opts.seed,
"bytes": img_bytes,
}
opts.seed = None
else:
st.warning("Your generated image may contain NSFW content.")
st.session_state["samples"] = None
samples = st.session_state.get("samples", None)
if samples is not None:
st.image(samples["img"], caption=samples["prompt"])
st.download_button(
"Download full-resolution",
samples["bytes"],
file_name="generated.jpg",
mime="image/jpg",
)
st.write(f"Seed: {samples['seed']}")
def app():
Fire(main)
if __name__ == "__main__":
app()