forked from vt-vl-lab/3d-photo-inpainting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
1416 lines (1355 loc) · 74.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import glob
import cv2
import scipy.misc as misc
from skimage.transform import resize
import numpy as np
from functools import reduce
from operator import mul
import torch
from torch import nn
import matplotlib.pyplot as plt
import re
try:
import cynetworkx as netx
except ImportError:
import networkx as netx
from scipy.ndimage import gaussian_filter
from skimage.feature import canny
import collections
import shutil
import imageio
import copy
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import time
from scipy.interpolate import interp1d
from collections import namedtuple
def path_planning(num_frames, x, y, z, path_type=''):
if path_type == 'straight-line':
corner_points = np.array([[0, 0, 0], [(0 + x) * 0.5, (0 + y) * 0.5, (0 + z) * 0.5], [x, y, z]])
corner_t = np.linspace(0, 1, len(corner_points))
t = np.linspace(0, 1, num_frames)
cs = interp1d(corner_t, corner_points, axis=0, kind='quadratic')
spline = cs(t)
xs, ys, zs = [xx.squeeze() for xx in np.split(spline, 3, 1)]
elif path_type == 'double-straight-line':
corner_points = np.array([[-x, -y, -z], [0, 0, 0], [x, y, z]])
corner_t = np.linspace(0, 1, len(corner_points))
t = np.linspace(0, 1, num_frames)
cs = interp1d(corner_t, corner_points, axis=0, kind='quadratic')
spline = cs(t)
xs, ys, zs = [xx.squeeze() for xx in np.split(spline, 3, 1)]
elif path_type == 'circle':
xs, ys, zs = [], [], []
for frame_id, bs_shift_val in enumerate(np.arange(-2.0, 2.0, (4./num_frames))):
xs += [np.cos(bs_shift_val * np.pi) * 1 * x]
ys += [np.sin(bs_shift_val * np.pi) * 1 * y]
zs += [np.cos(bs_shift_val * np.pi/2.) * 1 * z]
xs, ys, zs = np.array(xs), np.array(ys), np.array(zs)
return xs, ys, zs
def open_small_mask(mask, context, open_iteration, kernel):
np_mask = mask.cpu().data.numpy().squeeze().astype(np.uint8)
raw_mask = np_mask.copy()
np_context = context.cpu().data.numpy().squeeze().astype(np.uint8)
np_input = np_mask + np_context
for _ in range(open_iteration):
np_input = cv2.erode(cv2.dilate(np_input, np.ones((kernel, kernel)), iterations=1), np.ones((kernel,kernel)), iterations=1)
np_mask[(np_input - np_context) > 0] = 1
out_mask = torch.FloatTensor(np_mask).to(mask)[None, None, ...]
return out_mask
def filter_irrelevant_edge_new(self_edge, comp_edge, other_edges, other_edges_with_id, current_edge_id, context, depth, mesh, context_cc, spdb=False):
other_edges = other_edges.squeeze().astype(np.uint8)
other_edges_with_id = other_edges_with_id.squeeze()
self_edge = self_edge.squeeze()
dilate_bevel_self_edge = cv2.dilate((self_edge + comp_edge).astype(np.uint8), np.array([[1,1,1],[1,1,1],[1,1,1]]), iterations=1)
dilate_cross_self_edge = cv2.dilate((self_edge + comp_edge).astype(np.uint8), np.array([[0,1,0],[1,1,1],[0,1,0]]).astype(np.uint8), iterations=1)
edge_ids = np.unique(other_edges_with_id * context + (-1) * (1 - context)).astype(np.int)
end_depth_maps = np.zeros_like(self_edge)
self_edge_ids = np.sort(np.unique(other_edges_with_id[self_edge > 0]).astype(np.int))
self_edge_ids = self_edge_ids[1:] if self_edge_ids.shape[0] > 0 and self_edge_ids[0] == -1 else self_edge_ids
self_comp_ids = np.sort(np.unique(other_edges_with_id[comp_edge > 0]).astype(np.int))
self_comp_ids = self_comp_ids[1:] if self_comp_ids.shape[0] > 0 and self_comp_ids[0] == -1 else self_comp_ids
edge_ids = edge_ids[1:] if edge_ids[0] == -1 else edge_ids
other_edges_info = []
extend_other_edges = np.zeros_like(other_edges)
if spdb is True:
f, ((ax1, ax2, ax3)) = plt.subplots(1, 3, sharex=True, sharey=True); ax1.imshow(self_edge); ax2.imshow(context); ax3.imshow(other_edges_with_id * context + (-1) * (1 - context)); plt.show()
import pdb; pdb.set_trace()
filter_self_edge = np.zeros_like(self_edge)
for self_edge_id in self_edge_ids:
filter_self_edge[other_edges_with_id == self_edge_id] = 1
dilate_self_comp_edge = cv2.dilate(comp_edge, kernel=np.ones((3, 3)), iterations=2)
valid_self_comp_edge = np.zeros_like(comp_edge)
for self_comp_id in self_comp_ids:
valid_self_comp_edge[self_comp_id == other_edges_with_id] = 1
self_comp_edge = dilate_self_comp_edge * valid_self_comp_edge
filter_self_edge = (filter_self_edge + self_comp_edge).clip(0, 1)
for edge_id in edge_ids:
other_edge_locs = (other_edges_with_id == edge_id).astype(np.uint8)
condition = (other_edge_locs * other_edges * context.astype(np.uint8))
end_cross_point = dilate_cross_self_edge * condition * (1 - filter_self_edge)
end_bevel_point = dilate_bevel_self_edge * condition * (1 - filter_self_edge)
if end_bevel_point.max() != 0:
end_depth_maps[end_bevel_point != 0] = depth[end_bevel_point != 0]
if end_cross_point.max() == 0:
nxs, nys = np.where(end_bevel_point != 0)
for nx, ny in zip(nxs, nys):
bevel_node = [xx for xx in context_cc if xx[0] == nx and xx[1] == ny][0]
for ne in mesh.neighbors(bevel_node):
if other_edges_with_id[ne[0], ne[1]] > -1 and dilate_cross_self_edge[ne[0], ne[1]] > 0:
extend_other_edges[ne[0], ne[1]] = 1
break
else:
other_edges[other_edges_with_id == edge_id] = 0
other_edges = (other_edges + extend_other_edges).clip(0, 1) * context
return other_edges, end_depth_maps, other_edges_info
def clean_far_edge_new(input_edge, end_depth_maps, mask, context, global_mesh, info_on_pix, self_edge, inpaint_id, config):
mesh = netx.Graph()
hxs, hys = np.where(input_edge * mask > 0)
valid_near_edge = (input_edge != 0).astype(np.uint8) * context
valid_map = mask + context
invalid_edge_ids = []
for hx, hy in zip(hxs, hys):
node = (hx ,hy)
mesh.add_node((hx, hy))
eight_nes = [ne for ne in [(hx + 1, hy), (hx - 1, hy), (hx, hy + 1), (hx, hy - 1), \
(hx + 1, hy + 1), (hx - 1, hy - 1), (hx - 1, hy + 1), (hx + 1, hy - 1)]\
if 0 <= ne[0] < input_edge.shape[0] and 0 <= ne[1] < input_edge.shape[1] and 0 < input_edge[ne[0], ne[1]]] # or end_depth_maps[ne[0], ne[1]] != 0]
for ne in eight_nes:
mesh.add_edge(node, ne, length=np.hypot(ne[0] - hx, ne[1] - hy))
if end_depth_maps[ne[0], ne[1]] != 0:
mesh.nodes[ne[0], ne[1]]['cnt'] = True
if end_depth_maps[ne[0], ne[1]] == 0:
import pdb; pdb.set_trace()
mesh.nodes[ne[0], ne[1]]['depth'] = end_depth_maps[ne[0], ne[1]]
elif mask[ne[0], ne[1]] != 1:
four_nes = [nne for nne in [(ne[0] + 1, ne[1]), (ne[0] - 1, ne[1]), (ne[0], ne[1] + 1), (ne[0], ne[1] - 1)]\
if nne[0] < end_depth_maps.shape[0] and nne[0] >= 0 and nne[1] < end_depth_maps.shape[1] and nne[1] >= 0]
for nne in four_nes:
if end_depth_maps[nne[0], nne[1]] != 0:
mesh.add_edge(nne, ne, length=np.hypot(nne[0] - ne[0], nne[1] - ne[1]))
mesh.nodes[nne[0], nne[1]]['cnt'] = True
mesh.nodes[nne[0], nne[1]]['depth'] = end_depth_maps[nne[0], nne[1]]
ccs = [*netx.connected_components(mesh)]
end_pts = []
for cc in ccs:
end_pts.append(set())
for node in cc:
if mesh.nodes[node].get('cnt') is not None:
end_pts[-1].add((node[0], node[1], mesh.nodes[node]['depth']))
predef_npaths = [None for _ in range(len(ccs))]
fpath_map = np.zeros_like(input_edge) - 1
npath_map = np.zeros_like(input_edge) - 1
npaths, fpaths = dict(), dict()
break_flag = False
end_idx = 0
while end_idx < len(end_pts):
end_pt, cc = [*zip(end_pts, ccs)][end_idx]
end_idx += 1
sorted_end_pt = []
fpath = []
iter_fpath = []
if len(end_pt) > 2 or len(end_pt) == 0:
if len(end_pt) > 2:
continue
continue
if len(end_pt) == 2:
ravel_end = [*end_pt]
tmp_sub_mesh = mesh.subgraph(list(cc)).copy()
tmp_npath = [*netx.shortest_path(tmp_sub_mesh, (ravel_end[0][0], ravel_end[0][1]), (ravel_end[1][0], ravel_end[1][1]), weight='length')]
fpath_map1, npath_map1, disp_diff1 = plan_path(mesh, info_on_pix, cc, ravel_end[0:1], global_mesh, input_edge, mask, valid_map, inpaint_id, npath_map=None, fpath_map=None, npath=tmp_npath)
fpath_map2, npath_map2, disp_diff2 = plan_path(mesh, info_on_pix, cc, ravel_end[1:2], global_mesh, input_edge, mask, valid_map, inpaint_id, npath_map=None, fpath_map=None, npath=tmp_npath)
tmp_disp_diff = [disp_diff1, disp_diff2]
self_end = []
edge_len = []
ds_edge = cv2.dilate(self_edge.astype(np.uint8), np.ones((3, 3)), iterations=1)
if ds_edge[ravel_end[0][0], ravel_end[0][1]] > 0:
self_end.append(1)
else:
self_end.append(0)
if ds_edge[ravel_end[1][0], ravel_end[1][1]] > 0:
self_end.append(1)
else:
self_end.append(0)
edge_len = [np.count_nonzero(npath_map1), np.count_nonzero(npath_map2)]
sorted_end_pts = [xx[0] for xx in sorted(zip(ravel_end, self_end, edge_len, [disp_diff1, disp_diff2]), key=lambda x: (x[1], x[2]), reverse=True)]
re_npath_map1, re_fpath_map1 = (npath_map1 != -1).astype(np.uint8), (fpath_map1 != -1).astype(np.uint8)
re_npath_map2, re_fpath_map2 = (npath_map2 != -1).astype(np.uint8), (fpath_map2 != -1).astype(np.uint8)
if np.count_nonzero(re_npath_map1 * re_npath_map2 * mask) / \
(np.count_nonzero((re_npath_map1 + re_npath_map2) * mask) + 1e-6) > 0.5\
and np.count_nonzero(re_fpath_map1 * re_fpath_map2 * mask) / \
(np.count_nonzero((re_fpath_map1 + re_fpath_map2) * mask) + 1e-6) > 0.5\
and tmp_disp_diff[0] != -1 and tmp_disp_diff[1] != -1:
my_fpath_map, my_npath_map, npath, fpath = \
plan_path_e2e(mesh, cc, sorted_end_pts, global_mesh, input_edge, mask, valid_map, inpaint_id, npath_map=None, fpath_map=None)
npath_map[my_npath_map != -1] = my_npath_map[my_npath_map != -1]
fpath_map[my_fpath_map != -1] = my_fpath_map[my_fpath_map != -1]
if len(fpath) > 0:
edge_id = global_mesh.nodes[[*sorted_end_pts][0]]['edge_id']
fpaths[edge_id] = fpath
npaths[edge_id] = npath
invalid_edge_ids.append(edge_id)
else:
if tmp_disp_diff[0] != -1:
ratio_a = tmp_disp_diff[0] / (np.sum(tmp_disp_diff) + 1e-8)
else:
ratio_a = 0
if tmp_disp_diff[1] != -1:
ratio_b = tmp_disp_diff[1] / (np.sum(tmp_disp_diff) + 1e-8)
else:
ratio_b = 0
npath_len = len(tmp_npath)
if npath_len > config['depth_edge_dilate_2'] * 2:
npath_len = npath_len - (config['depth_edge_dilate_2'] * 1)
tmp_npath_a = tmp_npath[:int(np.floor(npath_len * ratio_a))]
tmp_npath_b = tmp_npath[::-1][:int(np.floor(npath_len * ratio_b))]
tmp_merge = []
if len(tmp_npath_a) > 0 and sorted_end_pts[0][0] == tmp_npath_a[0][0] and sorted_end_pts[0][1] == tmp_npath_a[0][1]:
if len(tmp_npath_a) > 0 and mask[tmp_npath_a[-1][0], tmp_npath_a[-1][1]] > 0:
tmp_merge.append([sorted_end_pts[:1], tmp_npath_a])
if len(tmp_npath_b) > 0 and mask[tmp_npath_b[-1][0], tmp_npath_b[-1][1]] > 0:
tmp_merge.append([sorted_end_pts[1:2], tmp_npath_b])
elif len(tmp_npath_b) > 0 and sorted_end_pts[0][0] == tmp_npath_b[0][0] and sorted_end_pts[0][1] == tmp_npath_b[0][1]:
if len(tmp_npath_b) > 0 and mask[tmp_npath_b[-1][0], tmp_npath_b[-1][1]] > 0:
tmp_merge.append([sorted_end_pts[:1], tmp_npath_b])
if len(tmp_npath_a) > 0 and mask[tmp_npath_a[-1][0], tmp_npath_a[-1][1]] > 0:
tmp_merge.append([sorted_end_pts[1:2], tmp_npath_a])
for tmp_idx in range(len(tmp_merge)):
if len(tmp_merge[tmp_idx][1]) == 0:
continue
end_pts.append(tmp_merge[tmp_idx][0])
ccs.append(set(tmp_merge[tmp_idx][1]))
if len(end_pt) == 1:
sub_mesh = mesh.subgraph(list(cc)).copy()
pnodes = netx.periphery(sub_mesh)
if len(end_pt) == 1:
ends = [*end_pt]
elif len(sorted_end_pt) == 1:
ends = [*sorted_end_pt]
else:
import pdb; pdb.set_trace()
try:
edge_id = global_mesh.nodes[ends[0]]['edge_id']
except:
import pdb; pdb.set_trace()
pnodes = sorted(pnodes,
key=lambda x: np.hypot((x[0] - ends[0][0]), (x[1] - ends[0][1])),
reverse=True)[0]
npath = [*netx.shortest_path(sub_mesh, (ends[0][0], ends[0][1]), pnodes, weight='length')]
for np_node in npath:
npath_map[np_node[0], np_node[1]] = edge_id
fpath = []
if global_mesh.nodes[ends[0]].get('far') is None:
print("None far")
else:
fnodes = global_mesh.nodes[ends[0]].get('far')
dmask = mask + 0
did = 0
while True:
did += 1
dmask = cv2.dilate(dmask, np.ones((3, 3)), iterations=1)
if did > 3:
break
ffnode = [fnode for fnode in fnodes if (dmask[fnode[0], fnode[1]] > 0 and mask[fnode[0], fnode[1]] == 0 and\
global_mesh.nodes[fnode].get('inpaint_id') != inpaint_id + 1)]
if len(ffnode) > 0:
fnode = ffnode[0]
break
if len(ffnode) == 0:
continue
fpath.append((fnode[0], fnode[1]))
barrel_dir = np.array([[1, 0], [1, 1], [0, 1], [-1, 1], [-1, 0], [-1, -1], [0, -1], [1, -1]])
n2f_dir = (int(fnode[0] - npath[0][0]), int(fnode[1] - npath[0][1]))
while True:
if barrel_dir[0, 0] == n2f_dir[0] and barrel_dir[0, 1] == n2f_dir[1]:
n2f_barrel = barrel_dir.copy()
break
barrel_dir = np.roll(barrel_dir, 1, axis=0)
for step in range(0, len(npath)):
if step == 0:
continue
elif step == 1:
next_dir = (npath[step][0] - npath[step - 1][0], npath[step][1] - npath[step - 1][1])
while True:
if barrel_dir[0, 0] == next_dir[0] and barrel_dir[0, 1] == next_dir[1]:
next_barrel = barrel_dir.copy()
break
barrel_dir = np.roll(barrel_dir, 1, axis=0)
barrel_pair = np.stack((n2f_barrel, next_barrel), axis=0)
n2f_dir = (barrel_pair[0, 0, 0], barrel_pair[0, 0, 1])
elif step > 1:
next_dir = (npath[step][0] - npath[step - 1][0], npath[step][1] - npath[step - 1][1])
while True:
if barrel_pair[1, 0, 0] == next_dir[0] and barrel_pair[1, 0, 1] == next_dir[1]:
next_barrel = barrel_pair.copy()
break
barrel_pair = np.roll(barrel_pair, 1, axis=1)
n2f_dir = (barrel_pair[0, 0, 0], barrel_pair[0, 0, 1])
new_locs = []
if abs(n2f_dir[0]) == 1:
new_locs.append((npath[step][0] + n2f_dir[0], npath[step][1]))
if abs(n2f_dir[1]) == 1:
new_locs.append((npath[step][0], npath[step][1] + n2f_dir[1]))
if len(new_locs) > 1:
new_locs = sorted(new_locs, key=lambda xx: np.hypot((xx[0] - fpath[-1][0]), (xx[1] - fpath[-1][1])))
break_flag = False
for new_loc in new_locs:
new_loc_nes = [xx for xx in [(new_loc[0] + 1, new_loc[1]), (new_loc[0] - 1, new_loc[1]),
(new_loc[0], new_loc[1] + 1), (new_loc[0], new_loc[1] - 1)]\
if xx[0] >= 0 and xx[0] < fpath_map.shape[0] and xx[1] >= 0 and xx[1] < fpath_map.shape[1]]
if np.all([(fpath_map[nlne[0], nlne[1]] == -1) for nlne in new_loc_nes]) != True:
break
if npath_map[new_loc[0], new_loc[1]] != -1:
if npath_map[new_loc[0], new_loc[1]] != edge_id:
break_flag = True
break
else:
continue
if valid_map[new_loc[0], new_loc[1]] == 0:
break_flag = True
break
fpath.append(new_loc)
if break_flag is True:
break
if step != len(npath) - 1:
for xx in npath[step:]:
if npath_map[xx[0], xx[1]] == edge_id:
npath_map[xx[0], xx[1]] = -1
npath = npath[:step]
if len(fpath) > 0:
for fp_node in fpath:
fpath_map[fp_node[0], fp_node[1]] = edge_id
fpaths[edge_id] = fpath
npaths[edge_id] = npath
fpath_map[valid_near_edge != 0] = -1
if len(fpath) > 0:
iter_fpath = copy.deepcopy(fpaths[edge_id])
for node in iter_fpath:
if valid_near_edge[node[0], node[1]] != 0:
fpaths[edge_id].remove(node)
return fpath_map, npath_map, False, npaths, fpaths, invalid_edge_ids
def plan_path_e2e(mesh, cc, end_pts, global_mesh, input_edge, mask, valid_map, inpaint_id, npath_map=None, fpath_map=None):
my_npath_map = np.zeros_like(input_edge) - 1
my_fpath_map = np.zeros_like(input_edge) - 1
sub_mesh = mesh.subgraph(list(cc)).copy()
ends_1, ends_2 = end_pts[0], end_pts[1]
edge_id = global_mesh.nodes[ends_1]['edge_id']
npath = [*netx.shortest_path(sub_mesh, (ends_1[0], ends_1[1]), (ends_2[0], ends_2[1]), weight='length')]
for np_node in npath:
my_npath_map[np_node[0], np_node[1]] = edge_id
fpath = []
if global_mesh.nodes[ends_1].get('far') is None:
print("None far")
else:
fnodes = global_mesh.nodes[ends_1].get('far')
dmask = mask + 0
while True:
dmask = cv2.dilate(dmask, np.ones((3, 3)), iterations=1)
ffnode = [fnode for fnode in fnodes if (dmask[fnode[0], fnode[1]] > 0 and mask[fnode[0], fnode[1]] == 0 and\
global_mesh.nodes[fnode].get('inpaint_id') != inpaint_id + 1)]
if len(ffnode) > 0:
fnode = ffnode[0]
break
e_fnodes = global_mesh.nodes[ends_2].get('far')
dmask = mask + 0
while True:
dmask = cv2.dilate(dmask, np.ones((3, 3)), iterations=1)
e_ffnode = [e_fnode for e_fnode in e_fnodes if (dmask[e_fnode[0], e_fnode[1]] > 0 and mask[e_fnode[0], e_fnode[1]] == 0 and\
global_mesh.nodes[e_fnode].get('inpaint_id') != inpaint_id + 1)]
if len(e_ffnode) > 0:
e_fnode = e_ffnode[0]
break
fpath.append((fnode[0], fnode[1]))
if len(e_ffnode) == 0 or len(ffnode) == 0:
return my_npath_map, my_fpath_map, [], []
barrel_dir = np.array([[1, 0], [1, 1], [0, 1], [-1, 1], [-1, 0], [-1, -1], [0, -1], [1, -1]])
n2f_dir = (int(fnode[0] - npath[0][0]), int(fnode[1] - npath[0][1]))
while True:
if barrel_dir[0, 0] == n2f_dir[0] and barrel_dir[0, 1] == n2f_dir[1]:
n2f_barrel = barrel_dir.copy()
break
barrel_dir = np.roll(barrel_dir, 1, axis=0)
for step in range(0, len(npath)):
if step == 0:
continue
elif step == 1:
next_dir = (npath[step][0] - npath[step - 1][0], npath[step][1] - npath[step - 1][1])
while True:
if barrel_dir[0, 0] == next_dir[0] and barrel_dir[0, 1] == next_dir[1]:
next_barrel = barrel_dir.copy()
break
barrel_dir = np.roll(barrel_dir, 1, axis=0)
barrel_pair = np.stack((n2f_barrel, next_barrel), axis=0)
n2f_dir = (barrel_pair[0, 0, 0], barrel_pair[0, 0, 1])
elif step > 1:
next_dir = (npath[step][0] - npath[step - 1][0], npath[step][1] - npath[step - 1][1])
while True:
if barrel_pair[1, 0, 0] == next_dir[0] and barrel_pair[1, 0, 1] == next_dir[1]:
next_barrel = barrel_pair.copy()
break
barrel_pair = np.roll(barrel_pair, 1, axis=1)
n2f_dir = (barrel_pair[0, 0, 0], barrel_pair[0, 0, 1])
new_locs = []
if abs(n2f_dir[0]) == 1:
new_locs.append((npath[step][0] + n2f_dir[0], npath[step][1]))
if abs(n2f_dir[1]) == 1:
new_locs.append((npath[step][0], npath[step][1] + n2f_dir[1]))
if len(new_locs) > 1:
new_locs = sorted(new_locs, key=lambda xx: np.hypot((xx[0] - fpath[-1][0]), (xx[1] - fpath[-1][1])))
break_flag = False
for new_loc in new_locs:
new_loc_nes = [xx for xx in [(new_loc[0] + 1, new_loc[1]), (new_loc[0] - 1, new_loc[1]),
(new_loc[0], new_loc[1] + 1), (new_loc[0], new_loc[1] - 1)]\
if xx[0] >= 0 and xx[0] < my_fpath_map.shape[0] and xx[1] >= 0 and xx[1] < my_fpath_map.shape[1]]
if fpath_map is not None and np.sum([fpath_map[nlne[0], nlne[1]] for nlne in new_loc_nes]) != 0:
break_flag = True
break
if my_npath_map[new_loc[0], new_loc[1]] != -1:
continue
if npath_map is not None and npath_map[new_loc[0], new_loc[1]] != edge_id:
break_flag = True
break
fpath.append(new_loc)
if break_flag is True:
break
if (e_fnode[0], e_fnode[1]) not in fpath:
fpath.append((e_fnode[0], e_fnode[1]))
if step != len(npath) - 1:
for xx in npath[step:]:
if my_npath_map[xx[0], xx[1]] == edge_id:
my_npath_map[xx[0], xx[1]] = -1
npath = npath[:step]
if len(fpath) > 0:
for fp_node in fpath:
my_fpath_map[fp_node[0], fp_node[1]] = edge_id
return my_fpath_map, my_npath_map, npath, fpath
def plan_path(mesh, info_on_pix, cc, end_pt, global_mesh, input_edge, mask, valid_map, inpaint_id, npath_map=None, fpath_map=None, npath=None):
my_npath_map = np.zeros_like(input_edge) - 1
my_fpath_map = np.zeros_like(input_edge) - 1
sub_mesh = mesh.subgraph(list(cc)).copy()
pnodes = netx.periphery(sub_mesh)
ends = [*end_pt]
edge_id = global_mesh.nodes[ends[0]]['edge_id']
pnodes = sorted(pnodes,
key=lambda x: np.hypot((x[0] - ends[0][0]), (x[1] - ends[0][1])),
reverse=True)[0]
if npath is None:
npath = [*netx.shortest_path(sub_mesh, (ends[0][0], ends[0][1]), pnodes, weight='length')]
else:
if (ends[0][0], ends[0][1]) == npath[0]:
npath = npath
elif (ends[0][0], ends[0][1]) == npath[-1]:
npath = npath[::-1]
else:
import pdb; pdb.set_trace()
for np_node in npath:
my_npath_map[np_node[0], np_node[1]] = edge_id
fpath = []
if global_mesh.nodes[ends[0]].get('far') is None:
print("None far")
else:
fnodes = global_mesh.nodes[ends[0]].get('far')
dmask = mask + 0
did = 0
while True:
did += 1
if did > 3:
return my_fpath_map, my_npath_map, -1
dmask = cv2.dilate(dmask, np.ones((3, 3)), iterations=1)
ffnode = [fnode for fnode in fnodes if (dmask[fnode[0], fnode[1]] > 0 and mask[fnode[0], fnode[1]] == 0 and\
global_mesh.nodes[fnode].get('inpaint_id') != inpaint_id + 1)]
if len(ffnode) > 0:
fnode = ffnode[0]
break
fpath.append((fnode[0], fnode[1]))
disp_diff = 0.
for n_loc in npath:
if mask[n_loc[0], n_loc[1]] != 0:
disp_diff = abs(abs(1. / info_on_pix[(n_loc[0], n_loc[1])][0]['depth']) - abs(1. / ends[0][2]))
break
barrel_dir = np.array([[1, 0], [1, 1], [0, 1], [-1, 1], [-1, 0], [-1, -1], [0, -1], [1, -1]])
n2f_dir = (int(fnode[0] - npath[0][0]), int(fnode[1] - npath[0][1]))
while True:
if barrel_dir[0, 0] == n2f_dir[0] and barrel_dir[0, 1] == n2f_dir[1]:
n2f_barrel = barrel_dir.copy()
break
barrel_dir = np.roll(barrel_dir, 1, axis=0)
for step in range(0, len(npath)):
if step == 0:
continue
elif step == 1:
next_dir = (npath[step][0] - npath[step - 1][0], npath[step][1] - npath[step - 1][1])
while True:
if barrel_dir[0, 0] == next_dir[0] and barrel_dir[0, 1] == next_dir[1]:
next_barrel = barrel_dir.copy()
break
barrel_dir = np.roll(barrel_dir, 1, axis=0)
barrel_pair = np.stack((n2f_barrel, next_barrel), axis=0)
n2f_dir = (barrel_pair[0, 0, 0], barrel_pair[0, 0, 1])
elif step > 1:
next_dir = (npath[step][0] - npath[step - 1][0], npath[step][1] - npath[step - 1][1])
while True:
if barrel_pair[1, 0, 0] == next_dir[0] and barrel_pair[1, 0, 1] == next_dir[1]:
next_barrel = barrel_pair.copy()
break
barrel_pair = np.roll(barrel_pair, 1, axis=1)
n2f_dir = (barrel_pair[0, 0, 0], barrel_pair[0, 0, 1])
new_locs = []
if abs(n2f_dir[0]) == 1:
new_locs.append((npath[step][0] + n2f_dir[0], npath[step][1]))
if abs(n2f_dir[1]) == 1:
new_locs.append((npath[step][0], npath[step][1] + n2f_dir[1]))
if len(new_locs) > 1:
new_locs = sorted(new_locs, key=lambda xx: np.hypot((xx[0] - fpath[-1][0]), (xx[1] - fpath[-1][1])))
break_flag = False
for new_loc in new_locs:
new_loc_nes = [xx for xx in [(new_loc[0] + 1, new_loc[1]), (new_loc[0] - 1, new_loc[1]),
(new_loc[0], new_loc[1] + 1), (new_loc[0], new_loc[1] - 1)]\
if xx[0] >= 0 and xx[0] < my_fpath_map.shape[0] and xx[1] >= 0 and xx[1] < my_fpath_map.shape[1]]
if fpath_map is not None and np.all([(fpath_map[nlne[0], nlne[1]] == -1) for nlne in new_loc_nes]) != True:
break_flag = True
break
if np.all([(my_fpath_map[nlne[0], nlne[1]] == -1) for nlne in new_loc_nes]) != True:
break_flag = True
break
if my_npath_map[new_loc[0], new_loc[1]] != -1:
continue
if npath_map is not None and npath_map[new_loc[0], new_loc[1]] != edge_id:
break_flag = True
break
if valid_map[new_loc[0], new_loc[1]] == 0:
break_flag = True
break
fpath.append(new_loc)
if break_flag is True:
break
if step != len(npath) - 1:
for xx in npath[step:]:
if my_npath_map[xx[0], xx[1]] == edge_id:
my_npath_map[xx[0], xx[1]] = -1
npath = npath[:step]
if len(fpath) > 0:
for fp_node in fpath:
my_fpath_map[fp_node[0], fp_node[1]] = edge_id
return my_fpath_map, my_npath_map, disp_diff
def refresh_node(old_node, old_feat, new_node, new_feat, mesh, stime=False):
mesh.add_node(new_node)
mesh.nodes[new_node].update(new_feat)
mesh.nodes[new_node].update(old_feat)
for ne in mesh.neighbors(old_node):
mesh.add_edge(new_node, ne)
if mesh.nodes[new_node].get('far') is not None:
tmp_far_nodes = mesh.nodes[new_node]['far']
for far_node in tmp_far_nodes:
if mesh.has_node(far_node) is False:
mesh.nodes[new_node]['far'].remove(far_node)
continue
if mesh.nodes[far_node].get('near') is not None:
for idx in range(len(mesh.nodes[far_node].get('near'))):
if mesh.nodes[far_node]['near'][idx][0] == new_node[0] and mesh.nodes[far_node]['near'][idx][1] == new_node[1]:
if len(mesh.nodes[far_node]['near'][idx]) == len(old_node):
mesh.nodes[far_node]['near'][idx] = new_node
if mesh.nodes[new_node].get('near') is not None:
tmp_near_nodes = mesh.nodes[new_node]['near']
for near_node in tmp_near_nodes:
if mesh.has_node(near_node) is False:
mesh.nodes[new_node]['near'].remove(near_node)
continue
if mesh.nodes[near_node].get('far') is not None:
for idx in range(len(mesh.nodes[near_node].get('far'))):
if mesh.nodes[near_node]['far'][idx][0] == new_node[0] and mesh.nodes[near_node]['far'][idx][1] == new_node[1]:
if len(mesh.nodes[near_node]['far'][idx]) == len(old_node):
mesh.nodes[near_node]['far'][idx] = new_node
if new_node != old_node:
mesh.remove_node(old_node)
if stime is False:
return mesh
else:
return mesh, None, None
def create_placeholder(context, mask, depth, fpath_map, npath_map, mesh, inpaint_id, edge_ccs, extend_edge_cc, all_edge_maps, self_edge_id):
add_node_time = 0
add_edge_time = 0
add_far_near_time = 0
valid_area = context + mask
H, W = mesh.graph['H'], mesh.graph['W']
edge_cc = edge_ccs[self_edge_id]
num_com = len(edge_cc) + len(extend_edge_cc)
hxs, hys = np.where(mask > 0)
for hx, hy in zip(hxs, hys):
mesh.add_node((hx, hy), inpaint_id=inpaint_id + 1, num_context=num_com)
for hx, hy in zip(hxs, hys):
four_nes = [(x, y) for x, y in [(hx + 1, hy), (hx - 1, hy), (hx, hy + 1), (hx, hy - 1)] if\
0 <= x < mesh.graph['H'] and 0 <= y < mesh.graph['W'] and valid_area[x, y] != 0]
for ne in four_nes:
if mask[ne[0], ne[1]] != 0:
if not mesh.has_edge((hx, hy), ne):
mesh.add_edge((hx, hy), ne)
elif depth[ne[0], ne[1]] != 0:
if mesh.has_node((ne[0], ne[1], depth[ne[0], ne[1]])) and\
not mesh.has_edge((hx, hy), (ne[0], ne[1], depth[ne[0], ne[1]])):
mesh.add_edge((hx, hy), (ne[0], ne[1], depth[ne[0], ne[1]]))
else:
print("Undefined context node.")
import pdb; pdb.set_trace()
near_ids = np.unique(npath_map)
if near_ids[0] == -1: near_ids = near_ids[1:]
for near_id in near_ids:
hxs, hys = np.where((fpath_map == near_id) & (mask > 0))
if hxs.shape[0] > 0:
mesh.graph['max_edge_id'] = mesh.graph['max_edge_id'] + 1
else:
break
for hx, hy in zip(hxs, hys):
mesh.nodes[(hx, hy)]['edge_id'] = int(round(mesh.graph['max_edge_id']))
four_nes = [(x, y) for x, y in [(hx + 1, hy), (hx - 1, hy), (hx, hy + 1), (hx, hy - 1)] if\
x < mesh.graph['H'] and x >= 0 and y < mesh.graph['W'] and y >= 0 and npath_map[x, y] == near_id]
for xx in four_nes:
xx_n = copy.deepcopy(xx)
if not mesh.has_node(xx_n):
if mesh.has_node((xx_n[0], xx_n[1], depth[xx_n[0], xx_n[1]])):
xx_n = (xx_n[0], xx_n[1], depth[xx_n[0], xx_n[1]])
if mesh.has_edge((hx, hy), xx_n):
# pass
mesh.remove_edge((hx, hy), xx_n)
if mesh.nodes[(hx, hy)].get('near') is None:
mesh.nodes[(hx, hy)]['near'] = []
mesh.nodes[(hx, hy)]['near'].append(xx_n)
connect_point_exception = set()
hxs, hys = np.where((npath_map == near_id) & (all_edge_maps > -1))
for hx, hy in zip(hxs, hys):
unknown_id = int(round(all_edge_maps[hx, hy]))
if unknown_id != near_id and unknown_id != self_edge_id:
unknown_node = set([xx for xx in edge_ccs[unknown_id] if xx[0] == hx and xx[1] == hy])
connect_point_exception |= unknown_node
hxs, hys = np.where((npath_map == near_id) & (mask > 0))
if hxs.shape[0] > 0:
mesh.graph['max_edge_id'] = mesh.graph['max_edge_id'] + 1
else:
break
for hx, hy in zip(hxs, hys):
mesh.nodes[(hx, hy)]['edge_id'] = int(round(mesh.graph['max_edge_id']))
mesh.nodes[(hx, hy)]['connect_point_id'] = int(round(near_id))
mesh.nodes[(hx, hy)]['connect_point_exception'] = connect_point_exception
four_nes = [(x, y) for x, y in [(hx + 1, hy), (hx - 1, hy), (hx, hy + 1), (hx, hy - 1)] if\
x < mesh.graph['H'] and x >= 0 and y < mesh.graph['W'] and y >= 0 and fpath_map[x, y] == near_id]
for xx in four_nes:
xx_n = copy.deepcopy(xx)
if not mesh.has_node(xx_n):
if mesh.has_node((xx_n[0], xx_n[1], depth[xx_n[0], xx_n[1]])):
xx_n = (xx_n[0], xx_n[1], depth[xx_n[0], xx_n[1]])
if mesh.has_edge((hx, hy), xx_n):
mesh.remove_edge((hx, hy), xx_n)
if mesh.nodes[(hx, hy)].get('far') is None:
mesh.nodes[(hx, hy)]['far'] = []
mesh.nodes[(hx, hy)]['far'].append(xx_n)
return mesh, add_node_time, add_edge_time, add_far_near_time
def clean_far_edge(mask_edge, mask_edge_with_id, context_edge, mask, info_on_pix, global_mesh, anchor):
if isinstance(mask_edge, torch.Tensor):
if mask_edge.is_cuda:
mask_edge = mask_edge.cpu()
mask_edge = mask_edge.data
mask_edge = mask_edge.numpy()
if isinstance(context_edge, torch.Tensor):
if context_edge.is_cuda:
context_edge = context_edge.cpu()
context_edge = context_edge.data
context_edge = context_edge.numpy()
if isinstance(mask, torch.Tensor):
if mask.is_cuda:
mask = mask.cpu()
mask = mask.data
mask = mask.numpy()
mask = mask.squeeze()
mask_edge = mask_edge.squeeze()
context_edge = context_edge.squeeze()
valid_near_edge = np.zeros_like(mask_edge)
far_edge = np.zeros_like(mask_edge)
far_edge_with_id = np.ones_like(mask_edge) * -1
near_edge_with_id = np.ones_like(mask_edge) * -1
uncleaned_far_edge = np.zeros_like(mask_edge)
# Detect if there is any valid pixel mask_edge, if not ==> return default value
if mask_edge.sum() == 0:
return far_edge, uncleaned_far_edge, far_edge_with_id, near_edge_with_id
mask_edge_ids = dict(collections.Counter(mask_edge_with_id.flatten())).keys()
for edge_id in mask_edge_ids:
if edge_id < 0:
continue
specific_edge_map = (mask_edge_with_id == edge_id).astype(np.uint8)
_, sub_specific_edge_maps = cv2.connectedComponents(specific_edge_map.astype(np.uint8), connectivity=8)
for sub_edge_id in range(1, sub_specific_edge_maps.max() + 1):
specific_edge_map = (sub_specific_edge_maps == sub_edge_id).astype(np.uint8)
edge_pxs, edge_pys = np.where(specific_edge_map > 0)
edge_mesh = netx.Graph()
for edge_px, edge_py in zip(edge_pxs, edge_pys):
edge_mesh.add_node((edge_px, edge_py))
for ex in [edge_px-1, edge_px, edge_px+1]:
for ey in [edge_py-1, edge_py, edge_py+1]:
if edge_px == ex and edge_py == ey:
continue
if ex < 0 or ex >= specific_edge_map.shape[0] or ey < 0 or ey >= specific_edge_map.shape[1]:
continue
if specific_edge_map[ex, ey] == 1:
if edge_mesh.has_node((ex, ey)):
edge_mesh.add_edge((ex, ey), (edge_px, edge_py))
periphery_nodes = netx.periphery(edge_mesh)
path_diameter = netx.diameter(edge_mesh)
start_near_node = None
for node_s in periphery_nodes:
for node_e in periphery_nodes:
if node_s != node_e:
if netx.shortest_path_length(edge_mesh, node_s, node_e) == path_diameter:
if np.any(context_edge[node_s[0]-1:node_s[0]+2, node_s[1]-1:node_s[1]+2].flatten()):
start_near_node = (node_s[0], node_s[1])
end_near_node = (node_e[0], node_e[1])
break
if np.any(context_edge[node_e[0]-1:node_e[0]+2, node_e[1]-1:node_e[1]+2].flatten()):
start_near_node = (node_e[0], node_e[1])
end_near_node = (node_s[0], node_s[1])
break
if start_near_node is not None:
break
if start_near_node is None:
continue
new_specific_edge_map = np.zeros_like(mask)
for path_node in netx.shortest_path(edge_mesh, start_near_node, end_near_node):
new_specific_edge_map[path_node[0], path_node[1]] = 1
context_near_pxs, context_near_pys = np.where(context_edge[start_near_node[0]-1:start_near_node[0]+2, start_near_node[1]-1:start_near_node[1]+2] > 0)
distance = np.abs((context_near_pxs - 1)) + np.abs((context_near_pys - 1))
if (np.where(distance == distance.min())[0].shape[0]) > 1:
closest_pxs = context_near_pxs[np.where(distance == distance.min())[0]]
closest_pys = context_near_pys[np.where(distance == distance.min())[0]]
closest_depths = []
for closest_px, closest_py in zip(closest_pxs, closest_pys):
if info_on_pix.get((closest_px + start_near_node[0] - 1 + anchor[0], closest_py + start_near_node[1] - 1 + anchor[2])) is not None:
for info in info_on_pix.get((closest_px + start_near_node[0] - 1 + anchor[0], closest_py + start_near_node[1] - 1 + anchor[2])):
if info['synthesis'] is False:
closest_depths.append(abs(info['depth']))
context_near_px, context_near_py = closest_pxs[np.array(closest_depths).argmax()], closest_pys[np.array(closest_depths).argmax()]
else:
context_near_px, context_near_py = context_near_pxs[distance.argmin()], context_near_pys[distance.argmin()]
context_near_node = (start_near_node[0]-1 + context_near_px, start_near_node[1]-1 + context_near_py)
far_node_list = []
global_context_near_node = (context_near_node[0] + anchor[0], context_near_node[1] + anchor[2])
if info_on_pix.get(global_context_near_node) is not None:
for info in info_on_pix[global_context_near_node]:
if info['synthesis'] is False:
context_near_node_3d = (global_context_near_node[0], global_context_near_node[1], info['depth'])
if global_mesh.nodes[context_near_node_3d].get('far') is not None:
for far_node in global_mesh.nodes[context_near_node_3d].get('far'):
far_node = (far_node[0] - anchor[0], far_node[1] - anchor[2], far_node[2])
if mask[far_node[0], far_node[1]] == 0:
far_node_list.append([far_node[0], far_node[1]])
if len(far_node_list) > 0:
far_nodes_dist = np.sum(np.abs(np.array(far_node_list) - np.array([[edge_px, edge_py]])), axis=1)
context_far_node = tuple(far_node_list[far_nodes_dist.argmin()])
corresponding_far_edge = np.zeros_like(mask_edge)
corresponding_far_edge[context_far_node[0], context_far_node[1]] = 1
surround_map = cv2.dilate(new_specific_edge_map.astype(np.uint8),
np.array([[1,1,1],[1,1,1],[1,1,1]]).astype(np.uint8),
iterations=1)
specific_edge_map_wo_end_pt = new_specific_edge_map.copy()
specific_edge_map_wo_end_pt[end_near_node[0], end_near_node[1]] = 0
surround_map_wo_end_pt = cv2.dilate(specific_edge_map_wo_end_pt.astype(np.uint8),
np.array([[1,1,1],[1,1,1],[1,1,1]]).astype(np.uint8),
iterations=1)
surround_map_wo_end_pt[new_specific_edge_map > 0] = 0
surround_map_wo_end_pt[context_near_node[0], context_near_node[1]] = 0
surround_map = surround_map_wo_end_pt.copy()
_, far_edge_cc = cv2.connectedComponents(surround_map.astype(np.uint8), connectivity=4)
start_far_node = None
accompany_far_node = None
if surround_map[context_far_node[0], context_far_node[1]] == 1:
start_far_node = context_far_node
else:
four_nes = [(context_far_node[0] - 1, context_far_node[1]),
(context_far_node[0] + 1, context_far_node[1]),
(context_far_node[0], context_far_node[1] - 1),
(context_far_node[0], context_far_node[1] + 1)]
candidate_bevel = []
for ne in four_nes:
if surround_map[ne[0], ne[1]] == 1:
start_far_node = (ne[0], ne[1])
break
elif (ne[0] != context_near_node[0] or ne[1] != context_near_node[1]) and \
(ne[0] != start_near_node[0] or ne[1] != start_near_node[1]):
candidate_bevel.append((ne[0], ne[1]))
if start_far_node is None:
for ne in candidate_bevel:
if ne[0] == context_far_node[0]:
bevel_xys = [[ne[0] + 1, ne[1]], [ne[0] - 1, ne[1]]]
if ne[1] == context_far_node[1]:
bevel_xys = [[ne[0], ne[1] + 1], [ne[0], ne[1] - 1]]
for bevel_x, bevel_y in bevel_xys:
if surround_map[bevel_x, bevel_y] == 1:
start_far_node = (bevel_x, bevel_y)
accompany_far_node = (ne[0], ne[1])
break
if start_far_node is not None:
break
if start_far_node is not None:
for far_edge_id in range(1, far_edge_cc.max() + 1):
specific_far_edge = (far_edge_cc == far_edge_id).astype(np.uint8)
if specific_far_edge[start_far_node[0], start_far_node[1]] == 1:
if accompany_far_node is not None:
specific_far_edge[accompany_far_node] = 1
far_edge[specific_far_edge > 0] = 1
far_edge_with_id[specific_far_edge > 0] = edge_id
end_far_candidates = np.zeros_like(far_edge)
end_far_candidates[end_near_node[0], end_near_node[1]] = 1
end_far_candidates = cv2.dilate(end_far_candidates.astype(np.uint8),
np.array([[0,1,0],[1,1,1],[0,1,0]]).astype(np.uint8),
iterations=1)
end_far_candidates[end_near_node[0], end_near_node[1]] = 0
invalid_nodes = (((far_edge_cc != far_edge_id).astype(np.uint8) * \
(far_edge_cc != 0).astype(np.uint8)).astype(np.uint8) + \
(new_specific_edge_map).astype(np.uint8) + \
(mask == 0).astype(np.uint8)).clip(0, 1)
end_far_candidates[invalid_nodes > 0] = 0
far_edge[end_far_candidates > 0] = 1
far_edge_with_id[end_far_candidates > 0] = edge_id
far_edge[context_far_node[0], context_far_node[1]] = 1
far_edge_with_id[context_far_node[0], context_far_node[1]] = edge_id
near_edge_with_id[(mask_edge_with_id == edge_id) > 0] = edge_id
uncleaned_far_edge = far_edge.copy()
far_edge[mask == 0] = 0
return far_edge, uncleaned_far_edge, far_edge_with_id, near_edge_with_id
def get_MiDaS_samples(image_folder, depth_folder, config, specific=None, aft_certain=None):
lines = [os.path.splitext(os.path.basename(xx))[0] for xx in glob.glob(os.path.join(image_folder, '*' + config['img_format']))]
samples = []
generic_pose = np.eye(4)
assert len(config['traj_types']) == len(config['x_shift_range']) ==\
len(config['y_shift_range']) == len(config['z_shift_range']) == len(config['video_postfix']), \
"The number of elements in 'traj_types', 'x_shift_range', 'y_shift_range', 'z_shift_range' and \
'video_postfix' should be equal."
tgt_pose = [[generic_pose * 1]]
tgts_poses = []
for traj_idx in range(len(config['traj_types'])):
tgt_poses = []
sx, sy, sz = path_planning(config['num_frames'], config['x_shift_range'][traj_idx], config['y_shift_range'][traj_idx],
config['z_shift_range'][traj_idx], path_type=config['traj_types'][traj_idx])
for xx, yy, zz in zip(sx, sy, sz):
tgt_poses.append(generic_pose * 1.)
tgt_poses[-1][:3, -1] = np.array([xx, yy, zz])
tgts_poses += [tgt_poses]
tgt_pose = generic_pose * 1
aft_flag = True
if aft_certain is not None and len(aft_certain) > 0:
aft_flag = False
for seq_dir in lines:
if specific is not None and len(specific) > 0:
if specific != seq_dir:
continue
if aft_certain is not None and len(aft_certain) > 0:
if aft_certain == seq_dir:
aft_flag = True
if aft_flag is False:
continue
samples.append({})
sdict = samples[-1]
sdict['depth_fi'] = os.path.join(depth_folder, seq_dir + config['depth_format'])
sdict['ref_img_fi'] = os.path.join(image_folder, seq_dir + config['img_format'])
H, W = imageio.imread(sdict['ref_img_fi']).shape[:2]
sdict['int_mtx'] = np.array([[max(H, W), 0, W//2], [0, max(H, W), H//2], [0, 0, 1]]).astype(np.float32)
if sdict['int_mtx'].max() > 1:
sdict['int_mtx'][0, :] = sdict['int_mtx'][0, :] / float(W)
sdict['int_mtx'][1, :] = sdict['int_mtx'][1, :] / float(H)
sdict['ref_pose'] = np.eye(4)
sdict['tgt_pose'] = tgt_pose
sdict['tgts_poses'] = tgts_poses
sdict['video_postfix'] = config['video_postfix']
sdict['tgt_name'] = [os.path.splitext(os.path.basename(sdict['depth_fi']))[0]]
sdict['src_pair_name'] = sdict['tgt_name'][0]
return samples
def get_valid_size(imap):
x_max = np.where(imap.sum(1).squeeze() > 0)[0].max() + 1
x_min = np.where(imap.sum(1).squeeze() > 0)[0].min()
y_max = np.where(imap.sum(0).squeeze() > 0)[0].max() + 1
y_min = np.where(imap.sum(0).squeeze() > 0)[0].min()
size_dict = {'x_max':x_max, 'y_max':y_max, 'x_min':x_min, 'y_min':y_min}
return size_dict
def dilate_valid_size(isize_dict, imap, dilate=[0, 0]):
osize_dict = copy.deepcopy(isize_dict)
osize_dict['x_min'] = max(0, osize_dict['x_min'] - dilate[0])
osize_dict['x_max'] = min(imap.shape[0], osize_dict['x_max'] + dilate[0])
osize_dict['y_min'] = max(0, osize_dict['y_min'] - dilate[0])
osize_dict['y_max'] = min(imap.shape[1], osize_dict['y_max'] + dilate[1])
return osize_dict
def crop_maps_by_size(size, *imaps):
omaps = []
for imap in imaps:
omaps.append(imap[size['x_min']:size['x_max'], size['y_min']:size['y_max']].copy())
return omaps
def smooth_cntsyn_gap(init_depth_map, mask_region, context_region, init_mask_region=None):
if init_mask_region is not None:
curr_mask_region = init_mask_region * 1
else:
curr_mask_region = mask_region * 0
depth_map = init_depth_map.copy()
for _ in range(2):
cm_mask = context_region + curr_mask_region
depth_s1 = np.roll(depth_map, 1, 0)
depth_s2 = np.roll(depth_map, -1, 0)
depth_s3 = np.roll(depth_map, 1, 1)
depth_s4 = np.roll(depth_map, -1, 1)
mask_s1 = np.roll(cm_mask, 1, 0)
mask_s2 = np.roll(cm_mask, -1, 0)
mask_s3 = np.roll(cm_mask, 1, 1)
mask_s4 = np.roll(cm_mask, -1, 1)
fluxin_depths = (depth_s1 * mask_s1 + depth_s2 * mask_s2 + depth_s3 * mask_s3 + depth_s4 * mask_s4) / \
((mask_s1 + mask_s2 + mask_s3 + mask_s4) + 1e-6)
fluxin_mask = (fluxin_depths != 0) * mask_region
init_mask = (fluxin_mask * (curr_mask_region >= 0).astype(np.float32) > 0).astype(np.uint8)
depth_map[init_mask > 0] = fluxin_depths[init_mask > 0]
if init_mask.shape[-1] > curr_mask_region.shape[-1]:
curr_mask_region[init_mask.sum(-1, keepdims=True) > 0] = 1
else:
curr_mask_region[init_mask > 0] = 1
depth_map[fluxin_mask > 0] = fluxin_depths[fluxin_mask > 0]
return depth_map
def read_MiDaS_depth(disp_fi, disp_rescale=10., h=None, w=None):
if 'npy' in os.path.splitext(disp_fi)[-1]:
disp = np.load(disp_fi)
else:
disp = imageio.imread(disp_fi).astype(np.float32)
disp = disp - disp.min()
disp = cv2.blur(disp / disp.max(), ksize=(3, 3)) * disp.max()
disp = (disp / disp.max()) * disp_rescale
if h is not None and w is not None:
disp = resize(disp / disp.max(), (h, w), order=1) * disp.max()
depth = 1. / np.maximum(disp, 0.05)
return depth
def follow_image_aspect_ratio(depth, image):
H, W = image.shape[:2]
image_aspect_ratio = H / W
dH, dW = depth.shape[:2]
depth_aspect_ratio = dH / dW
if depth_aspect_ratio > image_aspect_ratio:
resize_H = dH
resize_W = dH / image_aspect_ratio
else:
resize_W = dW
resize_H = dW * image_aspect_ratio
depth = resize(depth / depth.max(),
(int(resize_H),
int(resize_W)),
order=0) * depth.max()
return depth
def depth_resize(depth, origin_size, image_size):
if origin_size[0] is not 0:
max_depth = depth.max()
depth = depth / max_depth
depth = resize(depth, origin_size, order=1, mode='edge')
depth = depth * max_depth
else:
max_depth = depth.max()
depth = depth / max_depth
depth = resize(depth, image_size, order=1, mode='edge')
depth = depth * max_depth
return depth
def filter_irrelevant_edge(self_edge, other_edges, other_edges_with_id, current_edge_id, context, edge_ccs, mesh, anchor):
other_edges = other_edges.squeeze()
other_edges_with_id = other_edges_with_id.squeeze()
self_edge = self_edge.squeeze()
dilate_self_edge = cv2.dilate(self_edge.astype(np.uint8), np.array([[1,1,1],[1,1,1],[1,1,1]]).astype(np.uint8), iterations=1)
edge_ids = collections.Counter(other_edges_with_id.flatten()).keys()
other_edges_info = []
# import ipdb
# ipdb.set_trace()
for edge_id in edge_ids:
edge_id = int(edge_id)
if edge_id >= 0: