-
Notifications
You must be signed in to change notification settings - Fork 0
/
DLFC_F.py
503 lines (429 loc) · 19.8 KB
/
DLFC_F.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
# 为什么是svd???怎么实现svd??/
# 如果1280 + 720 = 2000, 如果直接将 1280*720的图片卷积映射到2000, 那不是简单的压缩吗?跟训练一个自编吗器有区别吗?
# 要贯彻svd fcn的思路, 必须得保证运算匹配关系啊, 我们建立的是 点到点的映射
# 因为自编吗网络两侧不能单单调整一侧,所以训练完毕后,用于压缩图片时结构、参数是确定的, 结果也是确定的,不能更新。
# 采用我们的结构,不仅少了一半网络需要训练, 还能够短时间内调整输出,这时只需要优化一个参数层, 而自编吗网络如果freze一些层也像
# 我们一样调整输出,是很难的,因为会影响其他图片的效果。而且想来也没我们快。最牛的是,我们这个结构可以同步地更新网络??
# 读数据存储,正常读取
# 训练网络, 先不用非线性的激活函数
# batch 训练,一个batch 1280 *720
from numpy import *
import zlib
import os
import torch.nn as nn
import numpy as np
import torch
from torch.autograd import Variable
import torch.utils.data as Data
import sys
import time
import random
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
def yuv44p_import(filename, dims):
fp0 = open(filename, 'rb')
bytes_temp = fp0.read()
blk_size = dims[0]*dims[1]*3
numpix = len(bytes_temp) // blk_size
fp0.close()
fp = open(filename, 'rb')
Y = []
U = []
V = []
Yt = np.zeros((dims[0], dims[1]), np.uint8, 'c')
Ut = np.zeros((dims[0], dims[1]), np.uint8, 'c')
Vt = np.zeros((dims[0], dims[1]), np.uint8, 'c')
for i in range(numpix):
for m in range(dims[0]):
for n in range(dims[1]):
Yt[m, n] = ord(fp.read(1))
for m in range(dims[0]):
for n in range(dims[1]):
Ut[m, n] = ord(fp.read(1))
for m in range(dims[0]):
for n in range(dims[1]):
Vt[m, n] = ord(fp.read(1))
Y = Y + [Yt]
U = U + [Ut]
V = V + [Vt]
fp.close()
# store the lsit in array
yuv_list_to_array = np.array((Y, U, V))
np.save("yuv_list_to_array.npy", yuv_list_to_array)
return numpix
def prepare_taining_data(path, data, dims, data_type):
# 将每张图片分解成1280*720个像素向量用于训练, 以后可以尝试在线制作, 因为每次也是1280*720个向量一个batch
# 这里的每张图片是yuv三个通道中的一个
d = dims[0]*dims[1]
data_x = np.zeros((len(data[0])*d, 1, dims[1]+dims[0]), dtype=np.int8)
data_y_y = np.zeros((len(data[0]) * dims[0] * dims[1], 1, 1), dtype=np.int8)
# data_u_y = np.zeros((len(data[0]) * dims[0] * dims[1], 1, 1), dtype=np.int8)
# data_v_y = np.zeros((len(data[0]) * dims[0] * dims[1], 1, 1), dtype=np.int8)
pix = 0
i, j = 0, 0
counter = 0
while pix < len(data[0]):
data_x[counter, 1, i] = 1
data_x[counter, 1, j + dims[0]] = 1
data_y_y[counter, 1, 1] = data[0][pix][i, j]
# data_u_y[counter, 1, 1] = data[1][pix][i, j]
# data_v_y[counter, 1, 1] = data[2][pix][i, j]
counter += 1
if i == dims[0] - 1:
i = 0
pix += 1
else:
if j == dims[1] - 1:
j = 0
i += 1
else:
j += 1
# data done
np.save(path + data_type + "data_x", data_x)
np.save(path + data_type + "data_u_y", data_y_y)
# np.save(path + data_type + "data_u_y", data_u_y)
# np.save(path + data_type + "data_v_y", data_v_y)
return 0
from tqdm import tqdm
class MyDataset(Data.Dataset):
def __init__(self, filepath):
number = 0
with open(filepath, "r") as f:
for _ in tqdm(f, desc="load training dataset"):
number += 1
self.number = number
self.fopen = open(filepath, 'r')
def __len__(self):
return self.number
def __getitem__(self, index):
line = self.fopen.__next__()
line = list(map(float, line.split(",")))
data_x = Variable(torch.from_numpy(np.array(line[1:])).to(torch.float32))
data_y = Variable(torch.from_numpy(np.array([line[0]])).to(torch.float32))
return data_x, data_y
def train(ckpt_path, data_type, data_x, batch_size=1, last_epoch=0, start_epoch=0, total_epoch=50001, RESUME=False, dims=[720, 1280]):
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
size_dim = dims[0]+dims[1]
drop_rate = 0.2
net = torch.nn.Sequential(
torch.nn.Linear(1, 1000),
# torch.nn.Tanh(),
torch.nn.Dropout(0.5),
torch.nn.Linear(1000, 100),
# torch.nn.ReLU(),
torch.nn.Dropout(0.5),
torch.nn.Linear(100, 2),
# torch.nn.Tanh(),
torch.nn.Linear(2, 100),
# torch.nn.ReLU(),
torch.nn.Linear(100, 100),
# torch.nn.Tanh(),
torch.nn.Linear(100, 1),
torch.nn.Tanh()
)
net.to(device)
optimizer = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
lr_schedule = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[500, 1000], gamma=0.1)
loss_func = torch.nn.MSELoss()
if RESUME:
print("loading exist model")
path_checkpoint = "D:/liu laing/zx_bisai/trained_models/checkpoint/"
path_checkpoint = path_checkpoint + "ckpt_" + str(last_epoch) + ".pth"
print("load", path_checkpoint)
checkpoint = torch.load(path_checkpoint)
net.load_state_dict(checkpoint['net'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
lr_schedule.load_state_dict(checkpoint['lr_schedule'])
else:
print("train from random")
print("strat training, start epoch", start_epoch)
# write all training datas into a txt as lines
# 之前的想法不适合巡练, 太稀疏了,我们使用 xij组合扰乱顺序获得多样性
# 1280*720*3 reshape to 1280*720x3
# 无论是一个 i或者j的维度还是两个维度都有,都很难收敛
# 我们只能考虑dropout 部分元素来增加多样性
prepare_shuffle_vectors = False
if prepare_shuffle_vectors:
with open("D:/liu laing/zx_bisai/DLFC_DATA/1280_vector_train2.txt", 'a') as fp:
for pix in range(len(data_x)-5):
data_temp = np.zeros((720, 1280, 3))
data_temp[:, :, 0] = np.array(data_x[pix]) / 200
for i in range(720):
data_temp[i, :, 1] = (i - 360) / 360
for j in range(1280):
data_temp[:, j, 2] = (j - 640) / 640
data_temp = data_temp.reshape(1280*720, 3)
i = 0
while i < 1280*720:
# fp.write(str(data_temp[i, 0]) + ",")
# random.shuffle(data_temp[i, :])
# fp.write(str(data_temp[i, 0]) + ",")
# fp.write(str(data_temp[i, 1]) + ",")
# fp.write(str(data_temp[i, 2]))
fp.write(str(data_temp[i, 0]) + ",")
random.shuffle(data_temp[i, :2])
fp.write(str(data_temp[i, 0]) + ",")
fp.write(str(data_temp[i, 1]))
fp.write("\n")
i += 1
with open("D:/liu laing/zx_bisai/DLFC_DATA/1280_vector_test2.txt", 'a') as fp:
for pix in range(len(data_x) -5, len(data_x)):
data_temp = np.zeros((720, 1280, 3))
data_temp[:,:, 0] = np.array(data_x[pix]) / 200
for i in range(720):
data_temp[i, :, 1] = (i - 360) / 360
for j in range(1280):
data_temp[:, j, 2] = (j - 640) / 640
data_temp = data_temp.reshape(1280*720, 3)
i = 0
while i < 1280*720:
# fp.write(str(data_temp[i, 0]) + ",")
# random.shuffle(data_temp[i, :])
# fp.write(str(data_temp[i, 0]) + ",")
# fp.write(str(data_temp[i, 1]) + ",")
# fp.write(str(data_temp[i, 2]))
fp.write(str(data_temp[i, 0]) + ",")
random.shuffle(data_temp[i, :2])
fp.write(str(data_temp[i, 0]) + ",")
fp.write(str(data_temp[i, 1]))
fp.write("\n")
i += 1
# train_dataset = MyDataset(filepath="D:/liu laing/zx_bisai/DLFC_DATA/1280_vector_train.txt")
# trainin_data = Data.DataLoader(dataset=train_dataset, batch_size=16, num_workers=0, shuffle=True)
# test_dataset = MyDataset(filepath="D:/liu laing/zx_bisai/DLFC_DATA/1280_vector_test.txt")
# test_data = Data.DataLoader(dataset=test_dataset, batch_size=1280, num_workers=0, shuffle=False)
# for step, (batch_x, batch_y) in enumerate(test_data):
# batch_x0, batch_y0 = batch_x.to(device), batch_y.to(device)
# break
# 使用dropout训练多样的自编码器
x = np.arange(0, 255, 1).reshape(-1, 1)
x = torch.from_numpy(x).to(torch.float32)
xx = Data.TensorDataset(x, x)
trainin_data = Data.DataLoader(dataset=xx, batch_size=8, num_workers=0, shuffle=True)
for epoch in range(start_epoch, total_epoch):
for step, (x, y) in enumerate(trainin_data):
batch_x, batch_y = x.to(device), y.to(device)
pred = net(batch_x)
loss = loss_func(pred, batch_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("epoch", epoch, "loss", loss)
# if epoch % 48000 == 0:
# print("testing##########################################")
# with torch.no_grad():
# pred = net(batch_x0)
# loss = loss_func(pred, batch_y0)
# print(loss)
# print("test done ########################################")
sys.exit(0)
checkpoint = {
"net": net.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch,
'lr_schedule': lr_schedule.state_dict()
}
if not os.path.isdir(ckpt_path):
os.mkdir(ckpt_path)
torch.save(checkpoint, ckpt_path + "/" + data_type + "__dlfc_f_%s.pth" % (str(epoch)))
sys.exit(0)
return epoch
def encode(data, checkpoint_file, store_file, dims):
# 只需要使用图片数量, 图片数据, 网络信息
print("load" + data)
data_x = np.load(data)
print("load", checkpoint_file)
checkpoint = torch.load(checkpoint_file)
input_data = np.zeros((dims[0]+dims[1], dims[0]+dims[1]))
for i in range(dims[0]+dims[1]):
input_data[i, i] = 1
net = torch.nn.Sequential(
torch.nn.Linear(dims[0]+dims[1], dims[0]+dims[1]),
torch.nn.Linear(dims[0]+dims[1], 2),
# 预测的结果
torch.nn.Linear(2, 10),
torch.nn.Linear(10, 1)
)
net.load_state_dict(checkpoint['net'])
decode_array = np.zeros((data_x.shape[0], dims[0]+dims[1])) # 每个dims[0]+dims[1] 向量存一张图片
# 封存后面的网络,训练第一层, 达到阈值存储中间值
optimizer = torch.optim.SGD(net.parameters(), lr=0.1, momentum=0)
loss_func = torch.nn.MSELoss()
for epoch in range(100):
x = torch.from_numpy(input_data)
x = Variable(x).to(torch.float32)
pred = net(x)
loss = loss_func(pred, y)
loss.backward()
optimizer.zero_grad()
optimizer.step()
with torch.no_grad():
for i in range(data_x.shape[0]):
x = net[0](x)
x = net[1](x)
x = net[2](x)
x = net[3](x)
decode_array[i, :] = x.detach().numpy()
print(x)
while True:
minv = min(decode_array[0, :])
if int(minv) == minv:
break
else:
decode_array = decode_array * 10
decode_array = decode_array.reshape(1, -1)
with open(store_file, 'wb') as f:
sum_byte = b''
for i in range(decode_array.shape[1]):
sum_byte = sum_byte + decode_array[0, i].tobytes()
sum_byte_com = zlib.compress(sum_byte, level=9)
print(len(sum_byte_com))
f.write(sum_byte_com)
def decode(data, file, decode_file, output_layer_dim, ckpt_file):
# 读出byte, decomprees, 反量化, 过神经网络, 规范化为0-255, decompress, 重新存储
print("load" + data)
data_x = np.load(data)
fp = open(file, 'rb')
square_size = [72, 128]
width = 1280
height = 720
sum_byte_com = fp.read()
# decompress, 得到量化的网络输出
sum_byte = zlib.decompress(sum_byte_com)
number_length = len(sum_byte) // data_x.shape[0]
# 把所有图片的各个纬度存成了一个向量,先把这个向量读出来再reshape, 完全按照逆行的格式
decode_list = []
in_byte_length = len(sum_byte) // (data_x.shape[0] * output_layer_dim) # 每一个量化值的byte长度
for i in range(data_x.shape[0] * output_layer_dim):
in_byte = sum_byte[i, i + in_byte_length]
decode_list.append(np.frombuffer(in_byte, dtype=np.int16)) # ???? 不太确定转换的对不对
decode_array = np.array(decode_list)
decode_array.reshape(data_x.shape[0], output_layer_dim)
# 读取完毕, 现在反量化,
max_pos = decode_array.max()
while True:
if max_pos < 1:
break
decode_array = decode_array / 10
# 反量化完毕,过神经网络
model = torch.load(ckpt_file)
encode_x = np.zeros(data_x.size)
with torch.no_grad():
for i in range(data_x.shape[0]):
x = torch.from_numpy(decode_array[i, :])
x = Variable(x).to(torch.float32)
x = model[4](x)
x = model[5](x)
x = model[6](x)
# net output
# 反量化
encode_output = x.detach().numpy() # (-1, 1) should be
# 输出等同于data_x 的数据类型, data_x 在制作时已经量化到(-1, 1),我们期望的收敛值也相应在(-1, 1)
encode_x[i, :] = encode_output
# 针对data_x的生成过程反量化 (-1,1)to (-128,128), tobyte, decompres, 分块还原
encode_x_decom = np.zeros((data_x.shape[0], width * height * 3)) # 储存还原的分块读取的图像
for i in range(data_x.shape[0]):
encode_output = (encode_x[i, :] * 128).trunc().tobytes() # other choice to integer?
encode_output_decom = zlib.decompress(encode_output)
encode_x_decom[i, :] = np.frombuffer(encode_output_decom, dtype=np.int8).reshape((1, -1))
# encode_x_decom : yuv yuv yuv......, 分块读取
# 反量化
# web [72, 128]
# excel [72, 128]
# ppt [72, 128]
# word [72, 128]
# for simplify, we use the same strategy for all data set
with open(decode_file, 'wb') as f:
for pix in range(data_x.shape[0]):
pix_data_temp = encode_x_decom[pix, :]
pix_data_temp = pix_data_temp.tolist()
y_width_eight_data = np.zeros((height, width))
u_width_eight_data = np.zeros((height, width))
v_width_eight_data = np.zeros((height, width))
square_x = 0
square_y = 0
while square_x < square_size[0] and square_y < square_size[1]:
for m in range(square_size[0]):
for n in range(square_size[1]):
y_width_eight_data[
square_x * square_size[0] + m, square_y * square_size[1] + n] = pix_data_temp.pop(0)
u_width_eight_data[
square_x * square_size[0] + m, square_y * square_size[1] + n] = pix_data_temp.pop(0)
v_width_eight_data[
square_x * square_size[0] + m, square_y * square_size[1] + n] = pix_data_temp.pop(0)
if square_x == square_size[0] - 1:
square_y += 1
square_x = 0
else:
square_x += 1
yy = y_width_eight_data.reshape(1, -1)
uu = u_width_eight_data.reshape(1, -1)
vv = v_width_eight_data.reshape(1, -1)
# 检查数据类型是不是int8, 如果是直接tobyte是可以的
f.write(yy.tobytes())
f.write(uu.tobytes())
f.write(vv.tobytes())
# 在一个函数内实现不同阶段的encode,decode
if __name__ == '__main__':
height, width = 720, 1280
stage = 'encode'
print(stage)
data_path = "D:/liu laing/zx_bisai/DLFC_DATA/"
yuv_path = 'D:/liu laing/zx_bisai/data/'
test_amount_dict = {'excel_01': 137, 'ppt_02': 106, 'web_03': 120, 'word_04': 169}# ppt 106 web 120 # excel 137 #word 169
data_type = "web_03"
ckpt_path = "D:/liu laing/zx_bisai/trained_models/checkpoint_dlfc"
if stage == 'encode':
# train model, store model
filename = yuv_path + data_type + ".yuv"
test_amount = test_amount_dict['web_03']
# data_x, data_y,u,v_y 四个文件,存在一个即验证完毕
# 为了节省内存,一律不在return数据, 而是从文件中读取
if os.path.exists(data_path + data_type + "data_x" +".npy"):
print("load data form ", data_path + data_type + "data_x" +".npy")
else:
print("no data set, prepare data set now")
if os.path.exists(data_path + data_type + "yuv_list_to_array" +".npy"):
print("load yuv_list_to_array")
else:
print(" no yuv_list_to_array")
numpix = yuv44p_import(filename, (height, width))
yuv_data = np.load(data_path + data_type + "yuv_list_to_array" + ".npy").astype(np.int8)
yuv_data = yuv_data.tolist()
#prepare_taining_data(data_path, yuv_data, (height, width), data_type)
# data_x = np.load(data_path + data_type + "data_x" +".npy")
# data_y_y = np.load(data_path + data_type + "data_y_y" + ".npy")
# data_u_y = np.load(data_path + data_type + "data_u_y" + ".npy")
# data_v_Y = np.load(data_path + data_type + "data_v_y" + ".npy")
data_x = yuv_data[0]
epoch = train(ckpt_path, data_type, data_x, batch_size=1) # 先试一下y通道
checkpoint_file = ckpt_path + "/" + data_type + "_%s.pth" % (str(epoch))
store_file = data_type + '.code'
# web 250 , ppt 200 excel 150, # word 190
#训练模型和encode过程使用的data不同,需要单独制作一次,此处同一批数据既用来训练,也是encode 的对象
sys.exit(0)
encode(data_x, checkpoint_file, store_file)
else:
print("decode .code files")
file = '.code'
epoch = 40
checkpoint_file = ckpt_path + "/" + + "_%s.pth" % (str(epoch))
decode_file = "decode" + "web03.yuv"
decode(file, decode_file, checkpoint_file)
path = " D:/liu laing/zx_bisai/DLFC_DATA/"
height = 720
width = 1280
filename = []
data, numpix = yuv44p_import(filename[0], (height, width))
prepare_taining_data(path, data, (height, width))
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
batch_size = 100
data_x = Variable(torch.from_numpy(data_x).to(torch.float32))
torch_dataset = Data.TensorDataset(data_x, data_y)
loader = Data.DataLoader(
dataset=torch_dataset,
batch_size=batch_size,
shuffle=True,
)