forked from LetianY/ancient-chinese-machine-translation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chrF++
204 lines (156 loc) · 7.74 KB
/
chrF++
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# citation: https://github.com/m-popovic/chrF
import sys
import math
import unicodedata
import argparse
from collections import defaultdict
import time
import string
def separate_characters(line):
return list(line.strip().replace(" ", ""))
def separate_punctuation(line):
words = line.strip().split()
tokenized = []
for w in words:
if len(w) == 1:
tokenized.append(w)
else:
lastChar = w[-1]
firstChar = w[0]
if lastChar in string.punctuation:
tokenized += [w[:-1], lastChar]
elif firstChar in string.punctuation:
tokenized += [firstChar, w[1:]]
else:
tokenized.append(w)
return tokenized
def ngram_counts(wordList, order):
counts = defaultdict(lambda: defaultdict(float))
nWords = len(wordList)
for i in range(nWords):
for j in range(1, order+1):
if i+j <= nWords:
ngram = tuple(wordList[i:i+j])
counts[j-1][ngram]+=1
return counts
def ngram_matches(ref_ngrams, hyp_ngrams):
matchingNgramCount = defaultdict(float)
totalRefNgramCount = defaultdict(float)
totalHypNgramCount = defaultdict(float)
for order in ref_ngrams:
for ngram in hyp_ngrams[order]:
totalHypNgramCount[order] += hyp_ngrams[order][ngram]
for ngram in ref_ngrams[order]:
totalRefNgramCount[order] += ref_ngrams[order][ngram]
if ngram in hyp_ngrams[order]:
matchingNgramCount[order] += min(ref_ngrams[order][ngram], hyp_ngrams[order][ngram])
return matchingNgramCount, totalRefNgramCount, totalHypNgramCount
def ngram_precrecf(matching, reflen, hyplen, beta):
ngramPrec = defaultdict(float)
ngramRec = defaultdict(float)
ngramF = defaultdict(float)
factor = beta**2
for order in matching:
if hyplen[order] > 0:
ngramPrec[order] = matching[order]/hyplen[order]
else:
ngramPrec[order] = 1e-16
if reflen[order] > 0:
ngramRec[order] = matching[order]/reflen[order]
else:
ngramRec[order] = 1e-16
denom = factor*ngramPrec[order] + ngramRec[order]
if denom > 0:
ngramF[order] = (1+factor)*ngramPrec[order]*ngramRec[order] / denom
else:
ngramF[order] = 1e-16
return ngramF, ngramRec, ngramPrec
def computeChrF(fpRef, fpHyp, nworder=6, ncorder=2, beta=2.0, sentence_level_scores = None):
norder = float(nworder + ncorder)
# initialisation of document level scores
totalMatchingCount = defaultdict(float)
totalRefCount = defaultdict(float)
totalHypCount = defaultdict(float)
totalChrMatchingCount = defaultdict(float)
totalChrRefCount = defaultdict(float)
totalChrHypCount = defaultdict(float)
averageTotalF = 0.0
nsent = 0
for hline, rline in zip(fpHyp, fpRef):
nsent += 1
# preparation for multiple references
maxF = 0.0
bestWordMatchingCount = None
bestCharMatchingCount = None
hypNgramCounts = ngram_counts(separate_punctuation(hline), nworder)
hypChrNgramCounts = ngram_counts(separate_characters(hline), ncorder)
# going through multiple references
refs = rline.split("*#")
for ref in refs:
refNgramCounts = ngram_counts(separate_punctuation(ref), nworder)
refChrNgramCounts = ngram_counts(separate_characters(ref), ncorder)
# number of overlapping n-grams, total number of ref n-grams, total number of hyp n-grams
matchingNgramCounts, totalRefNgramCount, totalHypNgramCount = ngram_matches(refNgramCounts, hypNgramCounts)
matchingChrNgramCounts, totalChrRefNgramCount, totalChrHypNgramCount = ngram_matches(refChrNgramCounts, hypChrNgramCounts)
# n-gram f-scores, recalls and precisions
ngramF, ngramRec, ngramPrec = ngram_precrecf(matchingNgramCounts, totalRefNgramCount, totalHypNgramCount, beta)
chrNgramF, chrNgramRec, chrNgramPrec = ngram_precrecf(matchingChrNgramCounts, totalChrRefNgramCount, totalChrHypNgramCount, beta)
sentRec = (sum(chrNgramRec.values()) + sum(ngramRec.values())) / norder
sentPrec = (sum(chrNgramPrec.values()) + sum(ngramPrec.values())) / norder
sentF = (sum(chrNgramF.values()) + sum(ngramF.values())) / norder
if sentF > maxF:
maxF = sentF
bestMatchingCount = matchingNgramCounts
bestRefCount = totalRefNgramCount
bestHypCount = totalHypNgramCount
bestChrMatchingCount = matchingChrNgramCounts
bestChrRefCount = totalChrRefNgramCount
bestChrHypCount = totalChrHypNgramCount
# all the references are done
# write sentence level scores
if sentence_level_scores:
sentence_level_scores.write("%i::c%i+w%i-F%i\t%.4f\n" % (nsent, ncorder, nworder, beta, 100*maxF))
# collect document level ngram counts
for order in range(nworder):
totalMatchingCount[order] += bestMatchingCount[order]
totalRefCount[order] += bestRefCount[order]
totalHypCount[order] += bestHypCount[order]
for order in range(ncorder):
totalChrMatchingCount[order] += bestChrMatchingCount[order]
totalChrRefCount[order] += bestChrRefCount[order]
totalChrHypCount[order] += bestChrHypCount[order]
averageTotalF += maxF
# all sentences are done
# total precision, recall and F (aritmetic mean of all ngrams)
totalNgramF, totalNgramRec, totalNgramPrec = ngram_precrecf(totalMatchingCount, totalRefCount, totalHypCount, beta)
totalChrNgramF, totalChrNgramRec, totalChrNgramPrec = ngram_precrecf(totalChrMatchingCount, totalChrRefCount, totalChrHypCount, beta)
totalF = (sum(totalChrNgramF.values()) + sum(totalNgramF.values())) / norder
averageTotalF = averageTotalF / nsent
totalRec = (sum(totalChrNgramRec.values()) + sum(totalNgramRec.values())) / norder
totalPrec = (sum(totalChrNgramPrec.values()) + sum(totalNgramPrec.values())) / norder
return totalF, averageTotalF, totalPrec, totalRec
def main():
sys.stdout.write("start_time:\t%i\n" % (time.time()))
argParser = argparse.ArgumentParser()
argParser.add_argument("-R", "--reference", help="reference translation", required=True)
argParser.add_argument("-H", "--hypothesis", help="hypothesis translation", required=True)
argParser.add_argument("-nc", "--ncorder", help="character n-gram order (default=6)", type=int, default=6)
argParser.add_argument("-nw", "--nworder", help="word n-gram order (default=2)", type=int, default=2)
argParser.add_argument("-b", "--beta", help="beta parameter (default=2)", type=float, default=2.0)
argParser.add_argument("-s", "--sent", help="show sentence level scores", action="store_true")
args = argParser.parse_args()
rtxt = open(args.reference, 'r')
htxt = open(args.hypothesis, 'r')
sentence_level_scores = None
if args.sent:
sentence_level_scores = sys.stdout # Or stderr?
totalF, averageTotalF, totalPrec, totalRec = computeChrF(rtxt, htxt, args.nworder, args.ncorder, args.beta, sentence_level_scores)
sys.stdout.write("c%i+w%i-F%i\t%.4f\n" % (args.ncorder, args.nworder, args.beta, 100*totalF))
sys.stdout.write("c%i+w%i-avgF%i\t%.4f\n" % (args.ncorder, args.nworder, args.beta, 100*averageTotalF))
#sys.stdout.write("c%i+w%i-Prec\t%.4f\n" % (args.ncorder, args.nworder, 100*totalPrec))
#sys.stdout.write("c%i+w%i-Rec\t%.4f\n" % (args.ncorder, args.nworder, 100*totalRec))
sys.stdout.write("end_time:\t%i\n" % (time.time()))
htxt.close()
rtxt.close()
if __name__ == "__main__":
main()