forked from fire717/Machine-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnms.py
103 lines (90 loc) · 3.3 KB
/
nms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import numpy as np
def py_nms(dets, thresh, mode="Union"):
"""
greedily select boxes with high confidence
keep boxes overlap <= thresh
rule out overlap > thresh
:param dets: [[x1, y1, x2, y2 score]]
:param thresh: retain overlap <= thresh
:return: indexes to keep
"""
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
print("-----------------")
print("order[1:]: ",order[1:])
print("x1[order[1:]]: ",x1[order[1:]])
print("np.maximum(x1[i], x1[order[1:]]): ", np.maximum(x1[i], x1[order[1:]]))
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
if mode == "Union":
ovr = inter / (areas[i] + areas[order[1:]] - inter)
elif mode == "Minimum":
ovr = inter / np.minimum(areas[i], areas[order[1:]])
#keep
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def soft_nms(boxes, scores, iou_thres, mode="Union"):
"""
greedily select boxes with high confidence
keep boxes overlap <= iou_thres
rule out overlap > iou_thres
:param dets: [[x1, y1, x2, y2 score]]
:param iou_thres: retain overlap <= iou_thres
:return: indexes to keep
"""
min_score = 0.001
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
#scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
#score降序的id号
keep = []
while order.size > 0:
i = order[0]
if scores[i]<min_score:
order = order[1:]
continue
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
if mode == "Union":
ovr = inter / (areas[i] + areas[order[1:]] - inter)
elif mode == "Minimum":
ovr = inter / np.minimum(areas[i], areas[order[1:]])
#keep
#inds_less = np.where(ovr <= iou_thres)[0]
inds_large = np.where(ovr > iou_thres)[0]
#原始只保留小于iou阈值的框
#order = order[inds_less + 1]
#改进:保留小于iou阈值的框,对于大于iou阈值的框,修改其score
# print(len(scores[inds_large + 1]), len(ovr[inds_large]))
# print(scores[inds_large + 1][:20],ovr[inds_large][:20],1-ovr[inds_large][:20])
#order[inds_large + 1] = order[inds_large + 1]*(1-ovr[inds_large])
scores[inds_large + 1] = scores[inds_large + 1]*(1-ovr[inds_large])
# print(scores[inds_large + 1][:20])
# b
order = order[1:]
return np.array(keep)