forked from fire717/Machine-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIoU_loss.py
72 lines (62 loc) · 2.94 KB
/
IoU_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#参考https://blog.csdn.net/weixin_38241876/article/details/110041645
#但是它计算有问题,这里是修改后的
def myIOULoss(self,predicted_locations, gt_locations, labels,
GIoU=False, DIoU=False, CIoU=False):
#torch.Size([691, 4]) torch.Size([691, 4])
#
### 1. to conner type box
pos_mask = labels > 0
pre_boxes = box_utils.convert_locations_to_boxes(
predicted_locations, self.priors, 0.1, 0.2)
pre_boxes = box_utils.center_form_to_corner_form(pre_boxes)
pre_boxes = pre_boxes[pos_mask, :].reshape(-1, 4)
#print(pre_boxes[:5])#[0.3799, 0.2177, 0.4424, 0.2723]
gt_boxes = box_utils.convert_locations_to_boxes(
gt_locations, self.priors, 0.1, 0.2)
gt_boxes = box_utils.center_form_to_corner_form(gt_boxes)
gt_boxes = gt_boxes[pos_mask, :].reshape(-1, 4)
#print(gt_boxes[:5])
#print(pre_boxes.shape, gt_boxes.shape)
num_pos = gt_boxes.size(0)
### 2.compute IOU
b1_x1, b1_y1, b1_x2, b1_y2 = pre_boxes[:,0], pre_boxes[:,1], pre_boxes[:,2], pre_boxes[:,3]
b2_x1, b2_y1, b2_x2, b2_y2 = gt_boxes[:,0], gt_boxes[:,1], gt_boxes[:,2], gt_boxes[:,3]
# Intersection area
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
# Union Area
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1
union = (w1 * h1 + 1e-16) + w2 * h2 - inter
#print(inter.shape, union.shape)
iou = inter / union # iou
# print(iou.shape) #[691]
# b
if GIoU or DIoU or CIoU:
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
if GIoU: # Generalized IoU https://arxiv.org/pdf/1902.09630.pdf
c_area = cw * ch + 1e-16 # convex area
loss = iou - (c_area - union) / c_area # GIoU
loss = 1-loss
else: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
# convex diagonal squared
c2 = cw ** 2 + ch ** 2 + 1e-16
# centerpoint distance squared
rho2 = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2)) ** 2 / 4 + ((b2_y1 + b2_y2) - (b1_y1 + b1_y2)) ** 2 / 4
if DIoU:
loss = iou - rho2 / c2 # DIoU
loss = 1-loss
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
with torch.no_grad():
alpha = v / (1 - iou + v)
loss = iou - (rho2 / c2 + v * alpha) # CIoU
loss = 1-loss
loss = loss.sum()
else:
iou = -torch.log(iou + 1e-16) #防止为0
loss = iou.sum()
#print(loss,num_pos)
# b
return loss, num_pos