forked from fire717/Machine-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fmeasure_metric.py
45 lines (37 loc) · 1.76 KB
/
fmeasure_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import keras.backend as K
def binary_accuracy(y_true, y_pred, threshold=0.5):
if threshold != 0.5:
threshold = K.cast(threshold, y_pred.dtype)
y_pred = K.cast(y_pred > threshold, y_pred.dtype)
return K.mean(K.equal(y_true, K.round(y_pred)), axis=-1)
def precision(y_true, y_pred):
# Calculates the precision
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
def recall(y_true, y_pred):
# Calculates the recall
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def fbeta_score(y_true, y_pred, beta=1):
# Calculates the F score, the weighted harmonic mean of precision and recall.
if beta < 0:
raise ValueError('The lowest choosable beta is zero (only precision).')
# If there are no true positives, fix the F score at 0 like sklearn.
if K.sum(K.round(K.clip(y_true, 0, 1))) == 0:
return 0
p = precision(y_true, y_pred)
r = recall(y_true, y_pred)
bb = beta ** 2
fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon())
return fbeta_score
def fmeasure(y_true, y_pred):
# Calculates the f-measure, the harmonic mean of precision and recall.
return fbeta_score(y_true, y_pred, beta=1)
earlystop = EarlyStopping(monitor='val_fmeasure', patience=4, verbose=0, mode='max')
model.compile(optimizer = 'adam',
loss='binary_crossentropy',
metrics=['accuracy',fmeasure,recall,precision])