-
Notifications
You must be signed in to change notification settings - Fork 140
/
Copy pathwebgui.py
410 lines (343 loc) · 17 KB
/
webgui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''
webui
'''
import argparse
from datetime import datetime
from pathlib import Path
import numpy as np
import torch
from PIL import Image
import gradio as gr
import shutil
import librosa
import python_speech_features
import time
from LIA_Model import LIA_Model
import os
from tqdm import tqdm
import argparse
import numpy as np
from torchvision import transforms
from templates import *
import argparse
import shutil
from moviepy.editor import *
import librosa
import python_speech_features
import importlib.util
import time
import os
import time
import numpy as np
# Disable Gradio analytics to avoid network-related issues
gr.analytics_enabled = False
def check_package_installed(package_name):
package_spec = importlib.util.find_spec(package_name)
if package_spec is None:
print(f"{package_name} is not installed.")
return False
else:
print(f"{package_name} is installed.")
return True
def frames_to_video(input_path, audio_path, output_path, fps=25):
image_files = [os.path.join(input_path, img) for img in sorted(os.listdir(input_path))]
clips = [ImageClip(m).set_duration(1/fps) for m in image_files]
video = concatenate_videoclips(clips, method="compose")
audio = AudioFileClip(audio_path)
final_video = video.set_audio(audio)
final_video.write_videofile(output_path, fps=fps, codec='libx264', audio_codec='aac')
def load_image(filename, size):
img = Image.open(filename).convert('RGB')
img = img.resize((size, size))
img = np.asarray(img)
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256
return img / 255.0
def img_preprocessing(img_path, size):
img = load_image(img_path, size) # [0, 1]
img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1]
imgs_norm = (img - 0.5) * 2.0 # [-1, 1]
return imgs_norm
def saved_image(img_tensor, img_path):
toPIL = transforms.ToPILImage()
img = toPIL(img_tensor.detach().cpu().squeeze(0)) # 使用squeeze(0)来移除批次维度
img.save(img_path)
def main(args):
frames_result_saved_path = os.path.join(args.result_path, 'frames')
os.makedirs(frames_result_saved_path, exist_ok=True)
test_image_name = os.path.splitext(os.path.basename(args.test_image_path))[0]
audio_name = os.path.splitext(os.path.basename(args.test_audio_path))[0]
predicted_video_256_path = os.path.join(args.result_path, f'{test_image_name}-{audio_name}.mp4')
predicted_video_512_path = os.path.join(args.result_path, f'{test_image_name}-{audio_name}_SR.mp4')
#======Loading Stage 1 model=========
lia = LIA_Model(motion_dim=args.motion_dim, fusion_type='weighted_sum')
lia.load_lightning_model(args.stage1_checkpoint_path)
lia.to(args.device)
#============================
conf = ffhq256_autoenc()
conf.seed = args.seed
conf.decoder_layers = args.decoder_layers
conf.infer_type = args.infer_type
conf.motion_dim = args.motion_dim
if args.infer_type == 'mfcc_full_control':
conf.face_location=True
conf.face_scale=True
conf.mfcc = True
elif args.infer_type == 'mfcc_pose_only':
conf.face_location=False
conf.face_scale=False
conf.mfcc = True
elif args.infer_type == 'hubert_pose_only':
conf.face_location=False
conf.face_scale=False
conf.mfcc = False
elif args.infer_type == 'hubert_audio_only':
conf.face_location=False
conf.face_scale=False
conf.mfcc = False
elif args.infer_type == 'hubert_full_control':
conf.face_location=True
conf.face_scale=True
conf.mfcc = False
else:
print('Type NOT Found!')
exit(0)
if not os.path.exists(args.test_image_path):
print(f'{args.test_image_path} does not exist!')
exit(0)
if not os.path.exists(args.test_audio_path):
print(f'{args.test_audio_path} does not exist!')
exit(0)
img_source = img_preprocessing(args.test_image_path, args.image_size).to(args.device)
one_shot_lia_start, one_shot_lia_direction, feats = lia.get_start_direction_code(img_source, img_source, img_source, img_source)
#======Loading Stage 2 model=========
model = LitModel(conf)
state = torch.load(args.stage2_checkpoint_path, map_location='cpu')
model.load_state_dict(state, strict=True)
model.ema_model.eval()
model.ema_model.to(args.device)
#=================================
#======Audio Input=========
if conf.infer_type.startswith('mfcc'):
# MFCC features
wav, sr = librosa.load(args.test_audio_path, sr=16000)
input_values = python_speech_features.mfcc(signal=wav, samplerate=sr, numcep=13, winlen=0.025, winstep=0.01)
d_mfcc_feat = python_speech_features.base.delta(input_values, 1)
d_mfcc_feat2 = python_speech_features.base.delta(input_values, 2)
audio_driven_obj = np.hstack((input_values, d_mfcc_feat, d_mfcc_feat2))
frame_start, frame_end = 0, int(audio_driven_obj.shape[0]/4)
audio_start, audio_end = int(frame_start * 4), int(frame_end * 4) # The video frame is fixed to 25 hz and the audio is fixed to 100 hz
audio_driven = torch.Tensor(audio_driven_obj[audio_start:audio_end,:]).unsqueeze(0).float().to(args.device)
elif conf.infer_type.startswith('hubert'):
# Hubert features
if not os.path.exists(args.test_hubert_path):
if not check_package_installed('transformers'):
print('Please install transformers module first.')
exit(0)
hubert_model_path = './ckpts/chinese-hubert-large'
if not os.path.exists(hubert_model_path):
print('Please download the hubert weight into the ckpts path first.')
exit(0)
print('You did not extract the audio features in advance, extracting online now, which will increase processing delay')
start_time = time.time()
# load hubert model
from transformers import Wav2Vec2FeatureExtractor, HubertModel
audio_model = HubertModel.from_pretrained(hubert_model_path).to(args.device)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model_path)
audio_model.feature_extractor._freeze_parameters()
audio_model.eval()
# hubert model forward pass
audio, sr = librosa.load(args.test_audio_path, sr=16000)
input_values = feature_extractor(audio, sampling_rate=16000, padding=True, do_normalize=True, return_tensors="pt").input_values
input_values = input_values.to(args.device)
ws_feats = []
with torch.no_grad():
outputs = audio_model(input_values, output_hidden_states=True)
for i in range(len(outputs.hidden_states)):
ws_feats.append(outputs.hidden_states[i].detach().cpu().numpy())
ws_feat_obj = np.array(ws_feats)
ws_feat_obj = np.squeeze(ws_feat_obj, 1)
ws_feat_obj = np.pad(ws_feat_obj, ((0, 0), (0, 1), (0, 0)), 'edge') # align the audio length with video frame
execution_time = time.time() - start_time
print(f"Extraction Audio Feature: {execution_time:.2f} Seconds")
audio_driven_obj = ws_feat_obj
else:
print(f'Using audio feature from path: {args.test_hubert_path}')
audio_driven_obj = np.load(args.test_hubert_path)
frame_start, frame_end = 0, int(audio_driven_obj.shape[1]/2)
audio_start, audio_end = int(frame_start * 2), int(frame_end * 2) # The video frame is fixed to 25 hz and the audio is fixed to 50 hz
audio_driven = torch.Tensor(audio_driven_obj[:,audio_start:audio_end,:]).unsqueeze(0).float().to(args.device)
#============================
# Diffusion Noise
noisyT = torch.randn((1,frame_end, args.motion_dim)).to(args.device)
#======Inputs for Attribute Control=========
if os.path.exists(args.pose_driven_path):
pose_obj = np.load(args.pose_driven_path)
if len(pose_obj.shape) != 2:
print('please check your pose information. The shape must be like (T, 3).')
exit(0)
if pose_obj.shape[1] != 3:
print('please check your pose information. The shape must be like (T, 3).')
exit(0)
if pose_obj.shape[0] >= frame_end:
pose_obj = pose_obj[:frame_end,:]
else:
padding = np.tile(pose_obj[-1, :], (frame_end - pose_obj.shape[0], 1))
pose_obj = np.vstack((pose_obj, padding))
pose_signal = torch.Tensor(pose_obj).unsqueeze(0).to(args.device) / 90 # 90 is for normalization here
else:
yaw_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_yaw
pitch_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_pitch
roll_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_roll
pose_signal = torch.cat((yaw_signal, pitch_signal, roll_signal), dim=-1)
pose_signal = torch.clamp(pose_signal, -1, 1)
face_location_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.face_location
face_scae_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.face_scale
#===========================================
start_time = time.time()
#======Diffusion Denosing Process=========
generated_directions = model.render(one_shot_lia_start, one_shot_lia_direction, audio_driven, face_location_signal, face_scae_signal, pose_signal, noisyT, args.step_T, control_flag=args.control_flag)
#=========================================
execution_time = time.time() - start_time
print(f"Motion Diffusion Model: {execution_time:.2f} Seconds")
generated_directions = generated_directions.detach().cpu().numpy()
start_time = time.time()
#======Rendering images frame-by-frame=========
for pred_index in tqdm(range(generated_directions.shape[1])):
ori_img_recon = lia.render(one_shot_lia_start, torch.Tensor(generated_directions[:,pred_index,:]).to(args.device), feats)
ori_img_recon = ori_img_recon.clamp(-1, 1)
wav_pred = (ori_img_recon.detach() + 1) / 2
saved_image(wav_pred, os.path.join(frames_result_saved_path, "%06d.png"%(pred_index)))
#==============================================
execution_time = time.time() - start_time
print(f"Renderer Model: {execution_time:.2f} Seconds")
frames_to_video(frames_result_saved_path, args.test_audio_path, predicted_video_256_path)
shutil.rmtree(frames_result_saved_path)
# Enhancer
if args.face_sr and check_package_installed('gfpgan'):
from face_sr.face_enhancer import enhancer_list
import imageio
# Super-resolution
imageio.mimsave(predicted_video_512_path+'.tmp.mp4', enhancer_list(predicted_video_256_path, method='gfpgan', bg_upsampler=None), fps=float(25))
# Merge audio and video
video_clip = VideoFileClip(predicted_video_512_path+'.tmp.mp4')
audio_clip = AudioFileClip(predicted_video_256_path)
final_clip = video_clip.set_audio(audio_clip)
final_clip.write_videofile(predicted_video_512_path, codec='libx264', audio_codec='aac')
os.remove(predicted_video_512_path+'.tmp.mp4')
if args.face_sr:
return predicted_video_256_path, predicted_video_512_path
else:
return predicted_video_256_path, predicted_video_256_path
def generate_video(uploaded_img, uploaded_audio, infer_type,
pose_yaw, pose_pitch, pose_roll, face_location, face_scale, step_T, device, face_sr, seed, face_crop):
if uploaded_img is None or uploaded_audio is None:
return None, gr.Markdown("Error: Input image or audio file is empty. Please check and upload both files.")
model_mapping = {
"mfcc_pose_only": "./ckpts/stage2_pose_only_mfcc.ckpt",
"mfcc_full_control": "./ckpts/stage2_more_controllable_mfcc.ckpt",
"hubert_audio_only": "./ckpts/stage2_audio_only_hubert.ckpt",
"hubert_pose_only": "./ckpts/stage2_pose_only_hubert.ckpt",
"hubert_full_control": "./ckpts/stage2_full_control_hubert.ckpt",
}
if face_crop:
from data_preprocess.crop_image2 import crop_image
print("==> croping source_img")
crop_path = os.path.join(os.path.dirname(uploaded_img), 'crop_'+os.path.basename(uploaded_img))
try:
crop_image(uploaded_img, crop_path)
if os.path.exists(crop_path):
uploaded_img = crop_path
except:
print('==> crop image failed, use original source for animate')
stage2_checkpoint_path = model_mapping.get(infer_type, "default_checkpoint.ckpt")
try:
args = argparse.Namespace(
infer_type=infer_type,
test_image_path=uploaded_img,
test_audio_path=uploaded_audio,
test_hubert_path='',
result_path='./outputs/',
stage1_checkpoint_path='./ckpts/stage1.ckpt',
stage2_checkpoint_path=stage2_checkpoint_path,
seed=seed,
control_flag=True,
pose_yaw=pose_yaw,
pose_pitch=pose_pitch,
pose_roll=pose_roll,
face_location=face_location,
pose_driven_path='not_supported_in_this_mode',
face_scale=face_scale,
step_T=step_T,
image_size=256,
device=device,
motion_dim=20,
decoder_layers=2,
face_sr=face_sr
)
# Save the uploaded audio to the expected path
# shutil.copy(uploaded_audio, args.test_audio_path)
# Run the main function
output_256_video_path, output_512_video_path = main(args)
# Check if the output video file exists
if not os.path.exists(output_256_video_path):
return None, gr.Markdown("Error: Video generation failed. Please check your inputs and try again.")
if output_256_video_path == output_512_video_path:
return gr.Video(value=output_256_video_path), None, gr.Markdown("Video (256*256 only) generated successfully!")
return gr.Video(value=output_256_video_path), gr.Video(value=output_512_video_path), gr.Markdown("Video generated successfully!")
except Exception as e:
return None, None, gr.Markdown(f"Error: An unexpected error occurred - {str(e)}")
default_values = {
"pose_yaw": 0,
"pose_pitch": 0,
"pose_roll": 0,
"face_location": 0.5,
"face_scale": 0.5,
"step_T": 50,
"seed": 0,
"device": "cuda"
}
with gr.Blocks() as demo:
gr.Markdown('# AniTalker')
gr.Markdown('![]()')
with gr.Row():
with gr.Column():
uploaded_img = gr.Image(type="filepath", label="Reference Image")
face_crop = gr.Checkbox(label="Face Crop (dlib)", value=False)
uploaded_audio = gr.Audio(type="filepath", label="Input Audio")
with gr.Column():
output_video_256 = gr.Video(label="Generated Video (256)")
output_video_512 = gr.Video(label="Generated Video (512)")
output_message = gr.Markdown()
generate_button = gr.Button("Generate Video")
with gr.Accordion("Configuration", open=True):
infer_type = gr.Dropdown(
label="Inference Type",
choices=['mfcc_pose_only', 'mfcc_full_control', 'hubert_audio_only', 'hubert_pose_only'],
value='hubert_audio_only'
)
face_sr = gr.Checkbox(label="Enable Face Super-Resolution (512*512)", value=False)
seed = gr.Number(label="Seed", value=default_values["seed"])
pose_yaw = gr.Slider(label="pose_yaw", minimum=-1, maximum=1, value=default_values["pose_yaw"])
pose_pitch = gr.Slider(label="pose_pitch", minimum=-1, maximum=1, value=default_values["pose_pitch"])
pose_roll = gr.Slider(label="pose_roll", minimum=-1, maximum=1, value=default_values["pose_roll"])
face_location = gr.Slider(label="face_location", minimum=0, maximum=1, value=default_values["face_location"])
face_scale = gr.Slider(label="face_scale", minimum=0, maximum=1, value=default_values["face_scale"])
step_T = gr.Slider(label="step_T", minimum=1, maximum=100, step=1, value=default_values["step_T"])
device = gr.Radio(label="Device", choices=["cuda", "cpu"], value=default_values["device"])
generate_button.click(
generate_video,
inputs=[
uploaded_img, uploaded_audio, infer_type,
pose_yaw, pose_pitch, pose_roll, face_location, face_scale, step_T, device, face_sr, seed,
face_crop
],
outputs=[output_video_256, output_video_512, output_message]
)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='EchoMimic')
parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
parser.add_argument('--server_port', type=int, default=3001, help='Server port')
args = parser.parse_args()
demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)