forked from LiDan456/MAD-GANs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AD.py
140 lines (122 loc) · 6.35 KB
/
AD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import tensorflow as tf
import numpy as np
import pdb
import json
import model
from mod_core_rnn_cell_impl import LSTMCell # modified to allow initializing bias in lstm
import utils
import eval
import DR_discriminator
import data_utils
# from pyod.utils.utility import *
from sklearn.utils.validation import *
from sklearn.metrics.classification import *
from sklearn.metrics.ranking import *
from time import time
begin = time()
"""
Here, only the discriminator was used to do the anomaly detection
"""
# --- get settings --- #
# parse command line arguments, or use defaults
parser = utils.rgan_options_parser()
settings = vars(parser.parse_args())
# if a settings file is specified, it overrides command line arguments/defaults
if settings['settings_file']: settings = utils.load_settings_from_file(settings)
# --- get data, split --- #
data_path = './experiments/data/' + settings['data_load_from'] + '.data.npy'
print('Loading data from', data_path)
settings["eval_single"] = False
settings["eval_an"] = False
samples, labels, index = data_utils.get_data(settings["data"], settings["seq_length"], settings["seq_step"],
settings["num_signals"], settings["sub_id"], settings["eval_single"],
settings["eval_an"], data_path)
# --- save settings, data --- #
# no need
print('Ready to run with settings:')
for (k, v) in settings.items(): print(v, '\t', k)
# add the settings to local environment
# WARNING: at this point a lot of variables appear
locals().update(settings)
json.dump(settings, open('./experiments/settings/' + identifier + '.txt', 'w'), indent=0)
class myADclass():
def __init__(self, epoch, settings=settings, samples=samples, labels=labels, index=index):
self.epoch = epoch
self.settings = settings
self.samples = samples
self.labels = labels
self.index = index
def ADfunc(self):
num_samples_t = self.samples.shape[0]
print('sample_shape:', self.samples.shape[0])
print('num_samples_t', num_samples_t)
# -- only discriminate one batch for one time -- #
D_test = np.empty([num_samples_t, self.settings['seq_length'], 1])
DL_test = np.empty([num_samples_t, self.settings['seq_length'], 1])
L_mb = np.empty([num_samples_t, self.settings['seq_length'], 1])
I_mb = np.empty([num_samples_t, self.settings['seq_length'], 1])
batch_times = num_samples_t // self.settings['batch_size']
for batch_idx in range(0, num_samples_t // self.settings['batch_size']):
# print('batch_idx:{}
# display batch progress
model.display_batch_progression(batch_idx, batch_times)
start_pos = batch_idx * self.settings['batch_size']
end_pos = start_pos + self.settings['batch_size']
T_mb = self.samples[start_pos:end_pos, :, :]
L_mmb = self.labels[start_pos:end_pos, :, :]
I_mmb = self.index[start_pos:end_pos, :, :]
para_path = './experiments/parameters/' + self.settings['sub_id'] + '_' + str(
self.settings['seq_length']) + '_' + str(self.epoch) + '.npy'
D_t, L_t = DR_discriminator.dis_trained_model(self.settings, T_mb, para_path)
D_test[start_pos:end_pos, :, :] = D_t
DL_test[start_pos:end_pos, :, :] = L_t
L_mb[start_pos:end_pos, :, :] = L_mmb
I_mb[start_pos:end_pos, :, :] = I_mmb
start_pos = (num_samples_t // self.settings['batch_size']) * self.settings['batch_size']
end_pos = start_pos + self.settings['batch_size']
size = samples[start_pos:end_pos, :, :].shape[0]
fill = np.ones([self.settings['batch_size'] - size, samples.shape[1], samples.shape[2]])
batch = np.concatenate([samples[start_pos:end_pos, :, :], fill], axis=0)
para_path = './experiments/parameters/' + self.settings['sub_id'] + '_' + str(
self.settings['seq_length']) + '_' + str(self.epoch) + '.npy'
D_t, L_t = DR_discriminator.dis_trained_model(self.settings, batch, para_path)
L_mmb = self.labels[start_pos:end_pos, :, :]
I_mmb = self.index[start_pos:end_pos, :, :]
D_test[start_pos:end_pos, :, :] = D_t[:size, :, :]
DL_test[start_pos:end_pos, :, :] = L_t[:size, :, :]
L_mb[start_pos:end_pos, :, :] = L_mmb
I_mb[start_pos:end_pos, :, :] = I_mmb
results = np.zeros([18, 4])
for i in range(2, 8):
tao = 0.1 * i
Accu2, Pre2, Rec2, F12 = DR_discriminator.detection_Comb(
DL_test, L_mb, I_mb, self.settings['seq_step'], tao)
print('seq_length:', self.settings['seq_length'])
print('Comb-logits-based-Epoch: {}; tao={:.1}; Accu: {:.4}; Pre: {:.4}; Rec: {:.4}; F1: {:.4}'
.format(self.epoch, tao, Accu2, Pre2, Rec2, F12))
results[i - 2, :] = [Accu2, Pre2, Rec2, F12]
Accu3, Pre3, Rec3, F13 = DR_discriminator.detection_Comb(
D_test, L_mb, I_mb, self.settings['seq_step'], tao)
print('seq_length:', self.settings['seq_length'])
print('Comb-statistic-based-Epoch: {}; tao={:.1}; Accu: {:.4}; Pre: {:.4}; Rec: {:.4}; F1: {:.4}'
.format(self.epoch, tao, Accu3, Pre3, Rec3, F13))
results[i - 2+6, :] = [Accu3, Pre3, Rec3, F13]
Accu5, Pre5, Rec5, F15 = DR_discriminator.sample_detection(D_test, L_mb, tao)
print('seq_length:', self.settings['seq_length'])
print('sample-wise-Epoch: {}; tao={:.1}; Accu: {:.4}; Pre: {:.4}; Rec: {:.4}; F1: {:.4}'
.format(self.epoch, tao, Accu5, Pre5, Rec5, F15))
results[i - 2+12, :] = [Accu5, Pre5, Rec5, F15]
return results
if __name__ == "__main__":
print('Main Starting...')
Results = np.empty([settings['num_epochs'], 18, 4])
for epoch in range(settings['num_epochs']):
# for epoch in range(50, 60):
ob = myADclass(epoch)
Results[epoch, :, :] = ob.ADfunc()
# res_path = './experiments/plots/Results' + '_' + settings['sub_id'] + '_' + str(
# settings['seq_length']) + '.npy'
# np.save(res_path, Results)
print('Main Terminating...')
end = time() - begin
print('Testing terminated | Training time=%d s' % (end))