-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
47 lines (41 loc) · 1.8 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import imageio
import torch
import torch.nn.functional as F
import numpy as np
import os, argparse
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from net.mfnet5 import MFNet
from utils.tdataloader import test_dataset
parser = argparse.ArgumentParser()
parser.add_argument('--testsize', type=int, default=416, help='testing size')
parser.add_argument('--pth_path', type=str, default='./checkpoints/mfnet5/MFNet-56.pth')
for _data_name in ['CAMO','CHAMELEON','COD10K']:
# for _data_name in ['CAMO']:
data_path = './data/TestDataset/{}/'.format(_data_name)
save_path = './results/mfnet5/56/{}/'.format(_data_name)
opt = parser.parse_args()
model = MFNet()
model.load_state_dict(torch.load(opt.pth_path))
model.cuda()
model.eval()
os.makedirs(save_path+'GT/', exist_ok=True)
# os.makedirs(save_path, exist_ok=True)
os.makedirs(save_path+'edge/', exist_ok=True)
image_root = '{}/Imgs/'.format(data_path)
gt_root = '{}/GT/'.format(data_path)
test_loader = test_dataset(image_root, gt_root, opt.testsize)
for i in range(test_loader.size):
image, gt, name,_ = test_loader.load_data()
gt = np.asarray(gt, np.float32)
gt /= (gt.max() + 1e-8)
image = image.cuda()
res, _, _, _,e= model(image)
# res = model(image)
# res = F.upsample(res, size=gt.shape, mode='bilinear', align_corners=False)
# res = res.sigmoid().data.cpu().numpy().squeeze()
# res = (res - res.min()) / (res.max() - res.min() + 1e-8)
# imageio.imwrite(save_path +'GT/'+ name, (res*255).astype(np.uint8))
e = F.upsample(e, size=gt.shape, mode='bilinear', align_corners=True)
e = e.data.cpu().numpy().squeeze()
e = (e - e.min()) / (e.max() - e.min() + 1e-8)
imageio.imwrite(save_path+'edge/'+name, (e*255).astype(np.uint8))