-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig-aml.yml
86 lines (64 loc) · 2.49 KB
/
config-aml.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
variables:
ap_vm_image: ubuntu-20.04
# Training pipeline settings
# Training dataset settings
training_dataset_name: uci-credit
training_dataset_description: uci_credit
training_dataset_local_path: data/training/
training_dataset_path_on_datastore: data/training/
training_dataset_type: local
training_dataset_storage_url: 'https://azureaidemostorage.blob.core.windows.net/data/'
# Training AzureML Environment name
training_env_name: credit-training
# Training AzureML Environment conda yaml
training_env_conda_yaml: data-science/environment/train.yml
# Name for the training pipeline
training_pipeline_name: credit-training
# Compute target for pipeline
training_target: cpu-cluster
training_target_sku: STANDARD_D2_V2
training_target_min_nodes: 0
training_target_max_nodes: 4
# Training arguments specification
training_arguments: ''
# Training datasets specification
# Syntax: <name>:<version>:<mode>:<steps (names separated by +)>
training_datasets: uci-credit:1:download:prep
# Name under which the model will be registered
model_name: credit-ci
# Batch pipeline settings
# Batch scoring dataset settings
scoring_dataset_name: credit-batch-input
scoring_dataset_description: credit-batch-input
scoring_dataset_local_path: data/scoring/
scoring_dataset_path_on_datastore: data/scoring/
scoring_dataset_type: local
scoring_dataset_storage_url: 'https://azureaidemostorage.blob.core.windows.net/data/'
# Batch AzureML Environment name
batch_env_name: credit-batch
# Batch AzureML Environment conda yaml
batch_env_conda_yaml: data-science/environment/batch.yml
# Name for the batch scoring pipeline
batch_pipeline_name: credit-batch-scoring
# Compute target for pipeline
batch_target: cpu-cluster
#not needed because batch uses the same target as training
# batch_target_sku: STANDARD_D2_V2
# batch_target_min_nodes: 0
# batch_target_max_nodes: 4
# Input batch dataset
batch_input_dataset_name: credit-batch-input
# Output dataset with results
batch_output_dataset_name: credit-batch-output
batch_output_path_on_datastore: credit-batch-scoring-results/{run-id}
batch_output_filename: results.csv
# Parallelization settings
batch_mini_batch_size: 8
batch_error_threshold: 1
batch_process_count_per_node: 1
batch_node_count: 1
# Monitoring settings
scoring_table_name: scoringdata
training_table_name: mlmonitoring