forked from prcore/assistant
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchat.py
129 lines (104 loc) · 4 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
from copy import deepcopy
import streamlit as st
from langchain.chains import ConversationChain
from langchain.chains.question_answering import load_qa_chain
from langchain.chat_models import ChatOpenAI
from langchain.docstore.document import Document
from langchain.memory import ConversationSummaryBufferMemory
from langchain.prompts import PromptTemplate
from langchain.vectorstores import Chroma
import config
from index import load_vector_store
def clear_input() -> None:
st.session_state["input"] = deepcopy(st.session_state["temp"])
st.session_state["input_disabled"] = True
st.session_state["temp"] = ""
def get_input() -> str:
st.text_input(
label="You: ",
value="",
placeholder=("Type here, send with Enter"
if not st.session_state.input_disabled else "Getting response..."),
label_visibility="hidden",
key="temp",
on_change=clear_input,
disabled=st.session_state.input_disabled,
)
return st.session_state["input"]
def get_response(query: str) -> str:
try:
chain = get_chain()
if st.session_state.magic_mode:
response = chain.predict(input=query)
return response.strip()
else:
response = chain({"input_documents": get_documents(query), "human_input": query}, return_only_outputs=True)
return response.get("output_text").strip()
except Exception as e:
print(f"Get response error: {e}")
return "Connection error. Please try again later."
def get_chain():
if "chain" not in st.session_state:
st.session_state["chain"] = load_qa_chain(
llm=ChatOpenAI(
temperature=0,
model_name=config.MODEL_NAME,
request_timeout=int(os.getenv("OPENAI_TIMEOUT", 15))
),
chain_type="stuff",
memory=get_memory(),
prompt=get_prompt()
)
return st.session_state["chain"]
def get_magic_chain():
return ConversationChain(
llm=ChatOpenAI(
temperature=0,
model_name=config.MODEL_NAME,
request_timeout=int(os.getenv("OPENAI_TIMEOUT", 15))
),
memory=get_memory()
)
def get_memory() -> ConversationSummaryBufferMemory:
if "memory" not in st.session_state:
st.session_state["memory"] = new_memory()
return st.session_state["memory"]
def new_memory() -> ConversationSummaryBufferMemory:
llm = ChatOpenAI(model_name=config.MODEL_NAME, request_timeout=int(os.getenv("OPENAI_TIMEOUT", 15)))
memory = ConversationSummaryBufferMemory(
llm=llm,
memory_key="chat_history",
input_key="human_input"
)
return memory
def new_magic_memory() -> ConversationSummaryBufferMemory:
llm = ChatOpenAI(model_name=config.MODEL_NAME, request_timeout=int(os.getenv("OPENAI_TIMEOUT", 15)))
memory = ConversationSummaryBufferMemory(llm=llm)
return memory
def get_prompt() -> PromptTemplate:
if not st.session_state["magic_mode"]:
with open(config.PROMPT_PATH, "r") as f:
template = f.read()
prompt = PromptTemplate(
input_variables=["chat_history", "human_input", "context"],
template=template
)
else:
template = ("The AI is talkative and provides lots of specific details from its context. "
"If the AI does not know the answer to a question, it truthfully says it does not know.\n\n"
"{chat_history}\n"
"Human: {human_input}\n"
"AI:")
prompt = PromptTemplate(
input_variables=["chat_history", "human_input"],
template=template
)
return prompt
def get_documents(query: str) -> list[Document]:
docsearch = get_docsearch()
return docsearch.similarity_search(query)
def get_docsearch() -> Chroma:
if "docsearch" not in st.session_state:
st.session_state["docsearch"] = load_vector_store()
return st.session_state["docsearch"]