-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsummary.m
63 lines (56 loc) · 1.87 KB
/
summary.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
load('Covariance')
Output=[];
% Compute the metrics for both first and second pages for tunring paramter from 0 to 0.9
for j=0:9
filename=strcat('Result0_',num2str(j));
load(filename);
result=zeros(2,4);
j
for i=101:150
%if isempty(Result{i})==0
path=strcat('c:\WT10G\',num2str(i),'.txt');
data=load(path);
scores=data(:,1);
relevance=data(:,2);
scores=scores.^2;
scores=(scores-min(scores))/(max(scores)-min(scores));
covarianceMatrix=Covariance{i-100};
Optimal=perform(scores,covarianceMatrix,optimalDesicion(i,:),relevance);
result=result+Optimal;
%end
end
Output=[Output;result./50];
end
%%%%%%%%%%%%%%%%%%
% Compute the metrics for both first and second pages using conventional algorithm
% The first page
result=zeros(2,4);
for i=101:150
%if isempty(Result{i})==0
path=strcat('c:\WT10G\',num2str(i),'.txt');
data=load(path);
scores=data(:,1);
relevance=data(:,2);
scores=scores.^2;
scores=(scores-min(scores))/(max(scores)-min(scores));
covarianceMatrix=Covariance{i-100};
noExplore=perform(scores,covarianceMatrix,1:5,relevance);
result=result+noExplore;
%end
end
Output=[Output;result./50];
% The second page
result=zeros(1,4);
for i=101:150
%if isempty(Result{i})==0
path=strcat('c:\WT10G\',num2str(i),'.txt');
data=load(path);
scores=data(:,1);
relevance=data(:,2);
scores=scores.^2;
scores=(scores-min(scores))/(max(scores)-min(scores));
covarianceMatrix=Covariance{i-100};
result=result+[metric(1:195,relevance(6:end))];
%end
end
Output=[Output;result./50];