-
Notifications
You must be signed in to change notification settings - Fork 155
/
mnist_model.py
113 lines (91 loc) · 3.58 KB
/
mnist_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# encoding: utf-8
import math
import torch
import itertools
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from grid_sample import grid_sample
from torch.autograd import Variable
from tps_grid_gen import TPSGridGen
class CNN(nn.Module):
def __init__(self, num_output):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, num_output)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return x
class ClsNet(nn.Module):
def __init__(self):
super(ClsNet, self).__init__()
self.cnn = CNN(10)
def forward(self, x):
return F.log_softmax(self.cnn(x))
class BoundedGridLocNet(nn.Module):
def __init__(self, grid_height, grid_width, target_control_points):
super(BoundedGridLocNet, self).__init__()
self.cnn = CNN(grid_height * grid_width * 2)
bias = torch.from_numpy(np.arctanh(target_control_points.numpy()))
bias = bias.view(-1)
self.cnn.fc2.bias.data.copy_(bias)
self.cnn.fc2.weight.data.zero_()
def forward(self, x):
batch_size = x.size(0)
points = F.tanh(self.cnn(x))
return points.view(batch_size, -1, 2)
class UnBoundedGridLocNet(nn.Module):
def __init__(self, grid_height, grid_width, target_control_points):
super(UnBoundedGridLocNet, self).__init__()
self.cnn = CNN(grid_height * grid_width * 2)
bias = target_control_points.view(-1)
self.cnn.fc2.bias.data.copy_(bias)
self.cnn.fc2.weight.data.zero_()
def forward(self, x):
batch_size = x.size(0)
points = self.cnn(x)
return points.view(batch_size, -1, 2)
class STNClsNet(nn.Module):
def __init__(self, args):
super(STNClsNet, self).__init__()
self.args = args
r1 = args.span_range_height
r2 = args.span_range_width
assert r1 < 1 and r2 < 1 # if >= 1, arctanh will cause error in BoundedGridLocNet
target_control_points = torch.Tensor(list(itertools.product(
np.arange(-r1, r1 + 0.00001, 2.0 * r1 / (args.grid_height - 1)),
np.arange(-r2, r2 + 0.00001, 2.0 * r2 / (args.grid_width - 1)),
)))
Y, X = target_control_points.split(1, dim = 1)
target_control_points = torch.cat([X, Y], dim = 1)
GridLocNet = {
'unbounded_stn': UnBoundedGridLocNet,
'bounded_stn': BoundedGridLocNet,
}[args.model]
self.loc_net = GridLocNet(args.grid_height, args.grid_width, target_control_points)
self.tps = TPSGridGen(args.image_height, args.image_width, target_control_points)
self.cls_net = ClsNet()
def forward(self, x):
batch_size = x.size(0)
source_control_points = self.loc_net(x)
source_coordinate = self.tps(source_control_points)
grid = source_coordinate.view(batch_size, self.args.image_height, self.args.image_width, 2)
transformed_x = grid_sample(x, grid)
logit = self.cls_net(transformed_x)
return logit
def get_model(args):
if args.model == 'no_stn':
print('create model without STN')
model = ClsNet()
else:
print('create model with STN')
model = STNClsNet(args)
return model