forked from MichaelFan01/STDC-Seg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cityscapes.py
123 lines (100 loc) · 3.88 KB
/
cityscapes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#!/usr/bin/python
# -*- encoding: utf-8 -*-
import torch
from torch.utils.data import Dataset
import torchvision.transforms as transforms
import os.path as osp
import os
from PIL import Image
import numpy as np
import json
from transform import *
class CityScapes(Dataset):
def __init__(self, rootpth, cropsize=(640, 480), mode='train',
randomscale=(0.125, 0.25, 0.375, 0.5, 0.675, 0.75, 0.875, 1.0, 1.25, 1.5), *args, **kwargs):
super(CityScapes, self).__init__(*args, **kwargs)
assert mode in ('train', 'val', 'test', 'trainval')
self.mode = mode
print('self.mode', self.mode)
self.ignore_lb = 255
with open('./cityscapes_info.json', 'r') as fr:
labels_info = json.load(fr)
self.lb_map = {el['id']: el['trainId'] for el in labels_info}
## parse img directory
self.imgs = {}
imgnames = []
impth = osp.join(rootpth, 'leftImg8bit', mode)
folders = os.listdir(impth)
for fd in folders:
fdpth = osp.join(impth, fd)
im_names = os.listdir(fdpth)
names = [el.replace('_leftImg8bit.png', '') for el in im_names]
impths = [osp.join(fdpth, el) for el in im_names]
imgnames.extend(names)
self.imgs.update(dict(zip(names, impths)))
## parse gt directory
self.labels = {}
gtnames = []
gtpth = osp.join(rootpth, 'gtFine', mode)
folders = os.listdir(gtpth)
for fd in folders:
fdpth = osp.join(gtpth, fd)
lbnames = os.listdir(fdpth)
lbnames = [el for el in lbnames if 'labelIds' in el]
names = [el.replace('_gtFine_labelIds.png', '') for el in lbnames]
lbpths = [osp.join(fdpth, el) for el in lbnames]
gtnames.extend(names)
self.labels.update(dict(zip(names, lbpths)))
self.imnames = imgnames
self.len = len(self.imnames)
print('self.len', self.mode, self.len)
assert set(imgnames) == set(gtnames)
assert set(self.imnames) == set(self.imgs.keys())
assert set(self.imnames) == set(self.labels.keys())
## pre-processing
self.to_tensor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
self.trans_train = Compose([
ColorJitter(
brightness = 0.5,
contrast = 0.5,
saturation = 0.5),
HorizontalFlip(),
# RandomScale((0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0)),
RandomScale(randomscale),
# RandomScale((0.125, 1)),
# RandomScale((0.125, 0.25, 0.375, 0.5, 0.675, 0.75, 0.875, 1.0)),
# RandomScale((0.125, 0.25, 0.375, 0.5, 0.675, 0.75, 0.875, 1.0, 1.125, 1.25, 1.375, 1.5)),
RandomCrop(cropsize)
])
def __getitem__(self, idx):
fn = self.imnames[idx]
impth = self.imgs[fn]
lbpth = self.labels[fn]
img = Image.open(impth).convert('RGB')
label = Image.open(lbpth)
if self.mode == 'train' or self.mode == 'trainval':
im_lb = dict(im = img, lb = label)
im_lb = self.trans_train(im_lb)
img, label = im_lb['im'], im_lb['lb']
img = self.to_tensor(img)
label = np.array(label).astype(np.int64)[np.newaxis, :]
label = self.convert_labels(label)
return img, label
def __len__(self):
return self.len
def convert_labels(self, label):
for k, v in self.lb_map.items():
label[label == k] = v
return label
if __name__ == "__main__":
from tqdm import tqdm
ds = CityScapes('./data/', n_classes=19, mode='val')
uni = []
for im, lb in tqdm(ds):
lb_uni = np.unique(lb).tolist()
uni.extend(lb_uni)
print(uni)
print(set(uni))