forked from weihuayi/mfem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex6p.cpp
397 lines (356 loc) · 15.1 KB
/
ex6p.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
// MFEM Example 6 - Parallel Version
//
// Compile with: make ex6p
//
// Sample runs: mpirun -np 4 ex6p -m ../data/star-hilbert.mesh -o 2
// mpirun -np 4 ex6p -m ../data/square-disc.mesh -rm 1 -o 1
// mpirun -np 4 ex6p -m ../data/square-disc.mesh -rm 1 -o 2 -h1
// mpirun -np 4 ex6p -m ../data/square-disc.mesh -o 2 -cs
// mpirun -np 4 ex6p -m ../data/square-disc-nurbs.mesh -o 2
// mpirun -np 4 ex6p -m ../data/fichera.mesh -o 2
// mpirun -np 4 ex6p -m ../data/escher.mesh -rm 2 -o 2
// mpirun -np 4 ex6p -m ../data/escher.mesh -o 2 -cs
// mpirun -np 4 ex6p -m ../data/disc-nurbs.mesh -o 2
// mpirun -np 4 ex6p -m ../data/ball-nurbs.mesh
// mpirun -np 4 ex6p -m ../data/pipe-nurbs.mesh
// mpirun -np 4 ex6p -m ../data/star-surf.mesh -o 2
// mpirun -np 4 ex6p -m ../data/square-disc-surf.mesh -rm 2 -o 2
// mpirun -np 4 ex6p -m ../data/inline-segment.mesh -o 1 -md 200
// mpirun -np 4 ex6p -m ../data/amr-quad.mesh
// mpirun -np 4 ex6p --restart
//
// Device sample runs:
// mpirun -np 4 ex6p -pa -d cuda
// mpirun -np 4 ex6p -pa -d occa-cuda
// mpirun -np 4 ex6p -pa -d raja-omp
// mpirun -np 4 ex6p -pa -d ceed-cpu
// * mpirun -np 4 ex6p -pa -d ceed-cuda
// mpirun -np 4 ex6p -pa -d ceed-cuda:/gpu/cuda/shared
//
// Description: This is a version of Example 1 with a simple adaptive mesh
// refinement loop. The problem being solved is again the Laplace
// equation -Delta u = 1 with homogeneous Dirichlet boundary
// conditions. The problem is solved on a sequence of meshes which
// are locally refined in a conforming (triangles, tetrahedrons)
// or non-conforming (quadrilaterals, hexahedra) manner according
// to a simple ZZ error estimator.
//
// The example demonstrates MFEM's capability to work with both
// conforming and nonconforming refinements, in 2D and 3D, on
// linear, curved and surface meshes. Interpolation of functions
// from coarse to fine meshes, restarting from a checkpoint, as
// well as persistent GLVis visualization are also illustrated.
//
// We recommend viewing Example 1 before viewing this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
int main(int argc, char *argv[])
{
// 1. Initialize MPI and HYPRE.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
const char *mesh_file = "../data/star.mesh";
int order = 1;
bool pa = false;
const char *device_config = "cpu";
bool nc_simplices = true;
int reorder_mesh = 0;
int max_dofs = 100000;
bool smooth_rt = true;
bool restart = false;
bool visualization = true;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
"--no-partial-assembly", "Enable Partial Assembly.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
args.AddOption(&reorder_mesh, "-rm", "--reorder-mesh",
"Reorder elements of the coarse mesh to improve "
"dynamic partitioning: 0=none, 1=hilbert, 2=gecko.");
args.AddOption(&nc_simplices, "-ns", "--nonconforming-simplices",
"-cs", "--conforming-simplices",
"For simplicial meshes, enable/disable nonconforming"
" refinement");
args.AddOption(&max_dofs, "-md", "--max-dofs",
"Stop after reaching this many degrees of freedom.");
args.AddOption(&smooth_rt, "-rt", "--smooth-rt", "-h1", "--smooth-h1",
"Represent the smooth flux in RT or vector H1 space.");
args.AddOption(&restart, "-res", "--restart", "-no-res", "--no-restart",
"Restart computation from the last checkpoint.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.Parse();
if (!args.Good())
{
if (myid == 0)
{
args.PrintUsage(cout);
}
return 1;
}
if (myid == 0)
{
args.PrintOptions(cout);
}
// 3. Enable hardware devices such as GPUs, and programming models such as
// CUDA, OCCA, RAJA and OpenMP based on command line options.
Device device(device_config);
if (myid == 0) { device.Print(); }
ParMesh *pmesh;
if (!restart)
{
// 4. Read the (serial) mesh from the given mesh file on all processors.
// We can handle triangular, quadrilateral, tetrahedral, hexahedral,
// surface and volume meshes with the same code.
Mesh mesh(mesh_file, 1, 1);
// 5. A NURBS mesh cannot be refined locally so we refine it uniformly
// and project it to a standard curvilinear mesh of order 2.
if (mesh.NURBSext)
{
mesh.UniformRefinement();
mesh.SetCurvature(2);
}
// 6. MFEM supports dynamic partitioning (load balancing) of parallel non-
// conforming meshes based on space-filling curve (SFC) partitioning.
// SFC partitioning is extremely fast and scales to hundreds of
// thousands of processors, but requires the coarse mesh to be ordered,
// ideally as a sequence of face-neighbors. The mesh may already be
// ordered (like star-hilbert.mesh) or we can order it here. Ordering
// type 1 is a fast spatial sort of the mesh, type 2 is a high quality
// optimization algorithm suitable for ordering general unstructured
// meshes.
if (reorder_mesh)
{
Array<int> ordering;
switch (reorder_mesh)
{
case 1: mesh.GetHilbertElementOrdering(ordering); break;
case 2: mesh.GetGeckoElementOrdering(ordering); break;
default: MFEM_ABORT("Unknown mesh reodering type " << reorder_mesh);
}
mesh.ReorderElements(ordering);
}
// 7. Make sure the mesh is in the non-conforming mode to enable local
// refinement of quadrilaterals/hexahedra, and the above partitioning
// algorithm. Simplices can be refined either in conforming or in non-
// conforming mode. The conforming mode however does not support
// dynamic partitioning.
mesh.EnsureNCMesh(nc_simplices);
// 8. Define a parallel mesh by partitioning the serial mesh.
// Once the parallel mesh is defined, the serial mesh can be deleted.
pmesh = new ParMesh(MPI_COMM_WORLD, mesh);
}
else
{
// 9. We can also restart the computation by loading the mesh from a
// previously saved check-point.
string fname(MakeParFilename("ex6p-checkpoint.", myid));
ifstream ifs(fname);
MFEM_VERIFY(ifs.good(), "Checkpoint file " << fname << " not found.");
pmesh = new ParMesh(MPI_COMM_WORLD, ifs);
}
int dim = pmesh->Dimension();
int sdim = pmesh->SpaceDimension();
MFEM_VERIFY(pmesh->bdr_attributes.Size() > 0,
"Boundary attributes required in the mesh.");
Array<int> ess_bdr(pmesh->bdr_attributes.Max());
ess_bdr = 1;
// 10. Define a finite element space on the mesh. The polynomial order is
// one (linear) by default, but this can be changed on the command line.
H1_FECollection fec(order, dim);
ParFiniteElementSpace fespace(pmesh, &fec);
// 11. As in Example 1p, we set up bilinear and linear forms corresponding to
// the Laplace problem -\Delta u = 1. We don't assemble the discrete
// problem yet, this will be done in the main loop.
ParBilinearForm a(&fespace);
if (pa)
{
a.SetAssemblyLevel(AssemblyLevel::PARTIAL);
a.SetDiagonalPolicy(Operator::DIAG_ONE);
}
ParLinearForm b(&fespace);
ConstantCoefficient one(1.0);
BilinearFormIntegrator *integ = new DiffusionIntegrator(one);
a.AddDomainIntegrator(integ);
b.AddDomainIntegrator(new DomainLFIntegrator(one));
// 12. The solution vector x and the associated finite element grid function
// will be maintained over the AMR iterations. We initialize it to zero.
ParGridFunction x(&fespace);
x = 0;
// 13. Connect to GLVis.
char vishost[] = "localhost";
int visport = 19916;
socketstream sout;
if (visualization)
{
sout.open(vishost, visport);
if (!sout)
{
if (myid == 0)
{
cout << "Unable to connect to GLVis server at "
<< vishost << ':' << visport << endl;
cout << "GLVis visualization disabled.\n";
}
visualization = false;
}
sout.precision(8);
}
// 14. Set up an error estimator. Here we use the Zienkiewicz-Zhu estimator
// with L2 projection in the smoothing step to better handle hanging
// nodes and parallel partitioning. We need to supply a space for the
// discontinuous flux (L2) and a space for the smoothed flux.
L2_FECollection flux_fec(order, dim);
ParFiniteElementSpace flux_fes(pmesh, &flux_fec, sdim);
FiniteElementCollection *smooth_flux_fec = NULL;
ParFiniteElementSpace *smooth_flux_fes = NULL;
if (smooth_rt && dim > 1)
{
// Use an H(div) space for the smoothed flux (this is the default).
smooth_flux_fec = new RT_FECollection(order-1, dim);
smooth_flux_fes = new ParFiniteElementSpace(pmesh, smooth_flux_fec, 1);
}
else
{
// Another possible option for the smoothed flux space: H1^dim space
smooth_flux_fec = new H1_FECollection(order, dim);
smooth_flux_fes = new ParFiniteElementSpace(pmesh, smooth_flux_fec, dim);
}
L2ZienkiewiczZhuEstimator estimator(*integ, x, flux_fes, *smooth_flux_fes);
// 15. A refiner selects and refines elements based on a refinement strategy.
// The strategy here is to refine elements with errors larger than a
// fraction of the maximum element error. Other strategies are possible.
// The refiner will call the given error estimator.
ThresholdRefiner refiner(estimator);
refiner.SetTotalErrorFraction(0.7);
// 16. The main AMR loop. In each iteration we solve the problem on the
// current mesh, visualize the solution, and refine the mesh.
for (int it = 0; ; it++)
{
HYPRE_BigInt global_dofs = fespace.GlobalTrueVSize();
if (myid == 0)
{
cout << "\nAMR iteration " << it << endl;
cout << "Number of unknowns: " << global_dofs << endl;
}
// 17. Assemble the right-hand side and determine the list of true
// (i.e. parallel conforming) essential boundary dofs.
Array<int> ess_tdof_list;
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
b.Assemble();
// 18. Assemble the stiffness matrix. Note that MFEM doesn't care at this
// point that the mesh is nonconforming and parallel. The FE space is
// considered 'cut' along hanging edges/faces, and also across
// processor boundaries.
a.Assemble();
// 19. Create the parallel linear system: eliminate boundary conditions.
// The system will be solved for true (unconstrained/unique) DOFs only.
OperatorPtr A;
Vector B, X;
const int copy_interior = 1;
a.FormLinearSystem(ess_tdof_list, x, b, A, X, B, copy_interior);
// 20. Solve the linear system A X = B.
// * With full assembly, use the BoomerAMG preconditioner from hypre.
// * With partial assembly, use a diagonal preconditioner.
Solver *M = NULL;
if (pa)
{
M = new OperatorJacobiSmoother(a, ess_tdof_list);
}
else
{
HypreBoomerAMG *amg = new HypreBoomerAMG;
amg->SetPrintLevel(0);
M = amg;
}
CGSolver cg(MPI_COMM_WORLD);
cg.SetRelTol(1e-6);
cg.SetMaxIter(2000);
cg.SetPrintLevel(3); // print the first and the last iterations only
cg.SetPreconditioner(*M);
cg.SetOperator(*A);
cg.Mult(B, X);
delete M;
// 21. Switch back to the host and extract the parallel grid function
// corresponding to the finite element approximation X. This is the
// local solution on each processor.
a.RecoverFEMSolution(X, b, x);
// 22. Send the solution by socket to a GLVis server.
if (visualization)
{
sout << "parallel " << num_procs << " " << myid << "\n";
sout << "solution\n" << *pmesh << x << flush;
}
if (global_dofs >= max_dofs)
{
if (myid == 0)
{
cout << "Reached the maximum number of dofs. Stop." << endl;
}
break;
}
// 23. Call the refiner to modify the mesh. The refiner calls the error
// estimator to obtain element errors, then it selects elements to be
// refined and finally it modifies the mesh. The Stop() method can be
// used to determine if a stopping criterion was met.
refiner.Apply(*pmesh);
if (refiner.Stop())
{
if (myid == 0)
{
cout << "Stopping criterion satisfied. Stop." << endl;
}
break;
}
// 24. Update the finite element space (recalculate the number of DOFs,
// etc.) and create a grid function update matrix. Apply the matrix
// to any GridFunctions over the space. In this case, the update
// matrix is an interpolation matrix so the updated GridFunction will
// still represent the same function as before refinement.
fespace.Update();
x.Update();
// 25. Load balance the mesh, and update the space and solution. Currently
// available only for nonconforming meshes.
if (pmesh->Nonconforming())
{
pmesh->Rebalance();
// Update the space and the GridFunction. This time the update matrix
// redistributes the GridFunction among the processors.
fespace.Update();
x.Update();
}
// 26. Inform also the bilinear and linear forms that the space has
// changed.
a.Update();
b.Update();
// 27. Save the current state of the mesh every 5 iterations. The
// computation can be restarted from this point. Note that unlike in
// visualization, we need to use the 'ParPrint' method to save all
// internal parallel data structures.
if ((it + 1) % 5 == 0)
{
ofstream ofs(MakeParFilename("ex6p-checkpoint.", myid));
ofs.precision(8);
pmesh->ParPrint(ofs);
if (myid == 0)
{
cout << "\nCheckpoint saved." << endl;
}
}
}
delete smooth_flux_fes;
delete smooth_flux_fec;
delete pmesh;
return 0;
}